
Proceedings
YAPC::Europe 2012

.com
Perl Software Development Services

�Table of contents

Foreword										 5

FatPacker: understanding and appreciating the insanity			 6

Vorbild::Beitrag::POD								 8

CGI.pm MUST DIE - Together we shall annihilate CGI.pm!			 9

CPANTS: Kwalitative website and its tools					 10

Designing the Internet of Things: Arduino and Perl				 11

Dancing with WebSockets								 12

Dancer 2 - Official status:								 14

Practical Dancer: moving away from CGI 					 16
		
Bringing Perl to a Younger Generation						 18

Asynchronous programming FTW!							 22

Mojolicious										 24

Continuous deployment with Perl							3 6

Array programming for mere mortals						3 7

Ontology Aware Applications							 42

Distributed Code Review in Perl - State of the Practice				 48

address-sanitizer - A fast memory error detector				 52

Exceptional Perl 6									 55

The joy of breaking stuff								 59

Macros in Rakudo									 66

Why statement modifiers can harm maintainability!				 70

A discussion on how to organize a Perl Mongers group				 72

Building C/C++ libraries with Perl 74

1#

�Foreword

1#

Welcome to YAPC::Europe 2012. This is the fourteenth European Perl conference! The Frankfurt
Perlmongers have great pleasure in hosting this event this year. We‘d like to welcome you here in
Frankfurt. The city that is now the heart of the Perl community for at least 3 days.

We have attendees from more than 40 countries all over the world, so there is a rich mix of different
cultures and different people.

Such an event would not be possible without you - the attendees, speakers, and sponsors. Please
take the chance to get to know lots of new people and talk to old friends. Please welcome the at-
tendees who are new to Perl conferences and introduce them to other Perl people.

We are sure that the talks and the discussions from this Perl conference will make a major contri-
bution to the Perl world. It will bring new ideas to the surface and existing ideas to new users. With
more than 80 talk a lot of topics are covered.

In these proceedings you find the articles for some talks. We hope that the papers will help to re-
mind what was said in the talks when you are back home.

The Frankfurt Perlmongers look forward to seeing over 80 great talks and meeting over 300 people.
Enjoy the conference!

Wieland Pusch, Max Maischein, Renée Bäcker
Board of Frankfurt Perlmongers e.V.

�FatPacker: understanding and appreciating the insanity

Bio Sawyer X

Sawyer X is a systems administrator and Perl
developer, involved in various projects (most no-
tably Dancer). He taught a Perl course, worked
on Perl/Android, lectures often, and rambles oc-
casionally on his blog.

Abstract

FatPacker was written by mst and allows us to
create a packed file with all of its dependen-
cies. We can then send that file to wherever we
want, and as long as it has a Perl interpreter, it
will work and will not require any prerequisite
installations.

You might recognize that cpanminus provides a
packed version under the domain http://www.
cpanmin.us/ which enables a user to run cpan-
minus straight from the command line without
installing it via:

 curl -kL cpanmin.us | perl - My::Module

You can also download it and use it:

 curl -kL cpanmin.us > cpanm
 perl cpanm My::Module

How to use

To use FatPacker from the command line, sim-
ply execute the following commands, replacing
myscript.pl with a script file you had written:

 fatpack trace myscript.pl
 fatpack packlists-for
 ‘cat fatpacker.trace’ >packlists
 fatpack tree `cat packlists`
 (fatpack file; cat myscript.pl)
 >myscript.packed.pl

How it works

Tracing
The major part of FatPacker is App::FatPacker::
Tracer. The tracer allows to trace all the modules
being used by your application. It does that by
dividing to two parts:

• Setting B::minus_c
The tracer sets the -c option using B (the same
way that perl -c works. Since this cannot be
reversed once done, the tracer has to be run as
a separate process (though FatPacker takes care
of that).

This option is set in order to prevent running the
script’s code.

• Catching the loaded modules
Since the -c option is used, no code can actually
run now. Or... is that so? There are still some blocks
that can run. One of them is the CHECK block,
which is pertinent to this operation, since it is
used to catch the transition after compilation
but before execution. This means that the CHECK
block can run after you had already ran all the
use statements, which are compile-time state-
ments.

Then we can see what’s in your @INC.

Unlike many other attempts to find used mod-
ules, FatPacker’s tracer goes to the source:
what perl actually loads. This gives it very ac-
curate results (excluding require statements),
and alongside the ability to add additional
modules (such as those you intend to require),
it is a powerful tool indeed.

Fetching packlists
Once we have traced all the modules being used,
we use FatPacker to fetch the packlists. Those
contain all the modules that were installed by the
distribution that carried whatever module we’ve
found in the trace. If we have a script that uses
the wonderful Data::Printer, the trace will
find File/HomeDir/FreeDesktop.pm is a module
that is being used (in that form) and the packlist
for it will contain all the modules that come with the

FatPacker is yet another module that contains a high dosage of trickery which most of us probably
wouldn’t think of, but solves a common problem that many of us share: the need to ship a module
with all of its dependencies.

This talk will cover what FatPacker is, how to use it and mainly: how it does its charm.

Author: Sawyer X (xsawyerx@cpan.org)

7

File::HomeDir distribution, which carries File::
HomeDir::FreeDesktop.

Creating the tree
Once we have the packlist fi le locations saved, we
can use fatpack tree to create a fatlib direc-
tory which will contain the entire File::HomeDir
distribution.

We could also include our own stuff in a lib di-
rectory.

Creating the packed tree
Finally we can use fatpack file in order to create
a single fi le made up of all the distributions we’ve
collected. We then concatenate our script to the
output as well and throw it all in a nice bow and
there it is: a completely self-contained Perl script
(sans the perl interpreter).

Caveat

FatPacker can only pack Pure-Perl modules, not
XS.

8

JETZT
GRATIS

VORBESTELLEN:

IHRE NEUE DOMAIN-
ENDUNG IM WEB!

In Kürze verfügbar – Web-Adressen mit neuen Endungen!
Das Web wird vielfältiger: Neben den bekannten Endungen wie .de und .com gibt es ab 2013 zahlreiche neue
Adressendungen – z.B. .bayern, .shop, .news, .sport, .berlin, .koeln, .earth und viele mehr.

Die besten Adressen fürs Web.

Jetzt die Gelegenheit nutzen und Ihre neue Adresse fürs Web vorbestellen – kostenlos und unverbindlich!

www.united-domains.de

DINA5.indd 1 08.08.12 13:37

Vorbild::Beitrag::POD

Bio Chris ‘BinGOs’

Williams Chris is a systems administrator who
is happy to deal with any operating system. He
has administrated OS/2, UNIX and Windows
networks in his time and mainly deals with Win-
dows and FreeBSD systems these days.

In his spare time he fi nds time o be a CPAN
Tester, a Perl5 porter and POEvangelist.

Abstract

Perl. Windows. The two are often seen as in-
compatible. But they are not.

For the past thirteen years or so I have been
valiantly using Perl in a Windows environment
to do useful stuff, from text mangling to Active
Directory mangling.

Starting with ActivePerl from ActiveState, ex-
periments with UWIN and Interix (now Services
for Unix), dabbling with Cygwin, onto building my
own Perls, taking up Strawberry Perl and ulti-
mately back to using Cygwin for day to day work.

The Cygwin choice being more about improve-
ments in Cygwin than limitations of ‘native’
Perl on Windows, things such as mintty and
the new ability to use the screen utility, and
being able to work in a familiar and produc-
tive command line environment, with Straw-
berry Perl being the choice for deployment
for elsewhere in the server environment.

Active Directory manipulation using ADSI (Active
Directory Service Interfaces) is one of the main
uses I make of Perl, regular bulk updates to thou-
sands of users when departmental reorganisa-
tions occur, generating management reports, to
bulk importing thumbnail photo images.

Perl is the glue that mends the broken glass.

This article is written in “dual language free style”, sometimes additional subsections, sometimes just
additional english paragraphs, sometimes obvious examples are not translated. Please report any
language problems, you could imagine.

Bibliography

• Strawberry Perl: http://strawberryperl.com
• ActiveState: http://www.activestate.com/perl
• Cygwin: http://www.cygwin.com
• mintty: http://code.google.com/p/mintty/
• UWIN: UWIN Overview - http://www2.re-
search.att.com/~gsf/download/uwin/uwin.html
• SFU/SUA and SUA Community: Services for
UNIX: http://en.wikipedia.org/wiki/Windows_
Services_for_UNIX
• SUA Community: http://www.suacommunity.
com/SUA.aspx
• Active Directory Service Interfaces: http://
msdn.microsoft.com/en-us/library/windows/
desktop/aa772170%28v=vs.85%29.aspx

Author: Chris ‘BinGOs’ Williams (chris@bingosnet.co.uk)

9CGI.pm MUST DIE - Together we shall annihilate CGI.pm!
Author: Sawyer X (xsawyerx@cpan.org)

Bio Sawyer X

Sawyer X is a systems administrator and Perl de-
veloper, involved in various projects (most nota-
bly Dancer). He taught a Perl course, worked on
Perl/Android, lectures often, and rambles occa-
sionally on his blog.

Abstract

CGI.pm has been the de facto standard for web
programming, but we’re in the future age now.
It’s time we realize CGI.pm is no longer a bene-
fi t, but in fact keeps us away from modern ways
of getting web done.

The purpose of this talk is to ruthlessly and savage-
ly attack CGI.pm in the hopes that it will make you
interested at seeing better ways of accomplishing
your web programming requirements.

JETZT
GRATIS

VORBESTELLEN:

IHRE NEUE DOMAIN-
ENDUNG IM WEB!

In Kürze verfügbar – Web-Adressen mit neuen Endungen!
Das Web wird vielfältiger: Neben den bekannten Endungen wie .de und .com gibt es ab 2013 zahlreiche neue
Adressendungen – z.B. .bayern, .shop, .news, .sport, .berlin, .koeln, .earth und viele mehr.

Die besten Adressen fürs Web.

Jetzt die Gelegenheit nutzen und Ihre neue Adresse fürs Web vorbestellen – kostenlos und unverbindlich!

www.united-domains.de

DINA5.indd 1 08.08.12 13:37

10CPANTS: Kwalitative website and its tools
Author: Kenichi Ishigaki (ishigaki@cpan.org)

Bio Kenichi Ishigaki

Kenichi Ishigaki (aka charsbar) is a freelance
programmer as well as a writer/translator.

Abstract

After the Perl QA Hackathon 2012, I have been
working on the refactoring of Module::CPANTS::
ProcessCPAN. In this session, I will explain some
of the issues I have encountered, and what I
have done and/or plan to do in the near future.

Background

Japanese Perl community has been enjoying the
CPANTS Kwalitee Game since 2005. In the first
two years, Koichi Taniguchi extracted the ranks
of Japanese CPAN authors by eye, but it seemed
so painful that I created Acme::CPANAuthors::
Japanese to maintain a list of Japanese authors
and took over the reporter’s role at YAPC::Asia
2008. I also reported the ranks in 2009 and
2010. In 2011, I created a website for Acme::
CPANAuthors to add something new to my an-
nual report. Unfortunately, the official CPANTS
Kwalitee site had been down for some time and
I couldn’t get the latest information that year. I
hurriedly set up an unofficial Kwalitee site. I had
to fix several issues, but it seemed to work rea-
sonably fine with some warnings of deprecation.
In 2012, I attended the Perl QA Hackathon to
get some tuits to remove these warnings. I also
refactored the Acme::CPANAuthors website be-
fore the hackathon and added similar tables and
graphs as of the CPANTS Kwalitee site, hoping
to improve Module::CPANTS::Site eventually.
After the hackathon and the following OSDC.TW
2012, I updated my Kwalitee site to reflect the
changes happened at the hackathon, and found
something bad occurred.

Issues

One of the fundamental issues was that Module::
CPANTS::ProcessCPAN depended on the inter-
nals of Module::CPANTS::Analyse so much that it
easily died when the data structure was changed.
It also had almost no tests, so you couldn’t easily
tell if a change would break things or not un-
til you actually run the process. The processing
time was another issue; it required almost three
days to process the whole CPAN on the server.
The way it stored analyses was also problematic;
it was nice to keep the past Kwalitee records,
but it was hard to merge records processed el-
sewhere.

Work in progress

So I started refactoring. For efficiency, I wrote a
barebone script that processes the whole CPAN
in parallel in the first place. With a SQLite queue
and a set of workers, the processing time de-
creased significantly. I also tested it against the
BackPAN to see if it can store the whole data
reasonably, which also seemed successful so far.
I wrote Archive::Any::Plugin::Bzip2 and then Ar-
chive::Any::Lite during the course of this parallel
testing. I also wrote something to provide only
a small part of the CPAN/BackPAN, which proved
to be quite useful to write a test on a distribution
that spits an error while processing.

As of this writing, the refactoring is still in its
early stage. My first goal is to write a series of
scripts to generate enough data for the Kwalitee
site, but there should be much more to be done.
I hope to talk about them more in detail in the
session.

Further Reading

Slides will be uploaded under http://www.slide-
share.net/charsbar/

11Designing the Internet of Things: Arduino and Perl
Author: Hakim Cassimally (osfameron, hakim@doesliverpool.com)

Bio Hakim Cassimally

Hakim is a relative newcomer to the world of elec-
tronics and making, and is finding that his univer-
sity education in Medieval Italian poetry hasn’t
adequately prepared him for some of the challenges
of the Internet of Things. His main achievement has
been proposing a simplified unified 1-10 scale for
electricity, thus abstracting away pointless com-
plexities like “volts”, “amps”, “watts”, and “ohms”.
He is perplexed that so far this scale hasn’t taken off,
but it’s only a matter of time.

Hakim is co-authoring a book on the Internet of
Things with Adrian McEwen. The book should
be published by Wiley and Sons in late 2012 or
early 2013. It has (some) Perl in it.

Abstract

An introduction to the exciting world of the Inter-
net of Things (IoT). Connecting physical objects
(bubble machines, lamps, plants, chicken-feed
silos) to microcontrollers and to the internet.

We’ll look at IoT in general, but also how Perl
powers things like:

• Early prototypes of Bubblino
• Russell Davies’s project “Ghostbox” (internet
radio)
• Clockodillo (WIP) API

and others.

Bibliography

• the Book of Things: The book website con-
tains a blog, and updated links to other rele-
vant bibliography. http://gutenberg.net.

• Arduino http://www.arduino.cc/

12

Dancing with WebSockets -
Using WebSocket in a Dancer web application
Author: Damien Krotkine (dams@cpan.org)

Bio Damien Krotkine

Damien Krotkine is a senior Perl developer and
team leader, vice-president of the French Perl
Mongers, and rock climber. You can read some
of his technical journey discoveries on his low
traffic blog.

Damien is a Dancer core developer.

Abstract

Many Perl developers know vaguely what Danc-
er is - a simple but powerful web application
framework for Perl. This talk is an attempt to
explain a real-life usage of Dancer, in which un-
usual techniques have been used.

This use-case is interesting because it is simp-
le enough to understand how to build a Dancer
application (beyond the Hello World example),
and because it demonstrates the flexibility of
Dancer, by showcasing how easy it is to use
specific technologies, like WebSockets or Any-
Event.

Background

In the company Damien works for, there are
CPAN mirrors. They have to stay a bit behind
the real CPAN for stability, but there is a tool to
update modules from the real CPAN to the local
mirrors. And that works fine.

Then there were the need for a web interface
to trigger it, and monitor the injection of new
modules (from the real CPAN), into local CPAN
mirrors.

The technological challenge

Instead of using a copy-paste approach and pick
up an existing web application, and bend it until
it fits my needs, it was decided to analyse the
needs and use adequate technology.

The problem to solve is not typical. What is re-
quired here is a web application that is a fron-
tend to a running process (injecting a module in
a CPAN mirror).

It is not like standard web applications (blog,
wiki, CRUD, etc). Here there is a long running
operation that shall happen only once at a time,
that generates logs to be displayed, with states
that need to be kept. In this regard, it’s interes-
ting to see how Dancer is versatile enough to
address these situations with ease.

The rough idea

What should the web interface provide? It should
provide a way to:

• input a package name,
• verify that this package exists on the CPAN,
and gather some informations on it,
• check that there is a CPAN version that is ne-
wer than the one on the local
mirrors
• inject the module in the mirror
• provide a way to confirm the injection, and dis-
play the process logs.

The backend

The mirrors were created using minicpan,
and are managed with CPAN::Mini. Injecting
a new module into these mirrors is done using
CPAN::Mini::Inject. So injecting the module
is basically done using CPAN::Mini::Inject::
inject with the right arguments, plus some
minor other things.

However, to be able to gather informations on
the module, It has been decided to use the Me-
taCPAN API (accessed using MetaCPAN::API).

The frontend

The web application should display the status of
the mirror: is there an injection going on, what
are the logs of the last injection, etc. It should
also disallow multiple injections at the same time.
It should update the status and logs of the opera-
tions in real-time, without needing a refresh on the
user’s side.

If two clients connect to the web application,
they should both see the same screen, the cur-
rent status, and current injection.

The Brand New

Perl Magazine

www.perlmag.com

AUTHORS
WANTED

PerlMag_Ad_Layout 1 25.07.12 14:07

13

To be able to do that, WebSocket technology is
used, which allows abi-directional communications
between the server and the client. That means a
pseudo “real-time” update of the status.

An HTML will provide a basic form for inputing
the module name, and some javascript will do
the update of the logs.

In Dancer, WebSockets are easy to use thanks
to Dancer::Plugin::WebSocket, a plugin that is
built on top of Web::Hippie. These require the
server to run on Twiggy, using AnyEvent.

Using a WebSocket, it is possible to in-
form the client when something changes
on the server. For instance, when a ru
ning injection is finished, and it’s now
possible to schedule a new one. Or when there
is more log text to be displayed.

Setting up a WebSocket is very easy, so messages
can be send from the server. By default, a message
content is considered as a log line, except if it has a
specific format, in which case it is considered
as a status change. Javascript is used to dis-
play incoming logs, and change the display of
the current status. Also, the button to schedule
an injection must be greyed out if an injection is
already running. That’s managed using Ja-
vascript as well, reacting to the change of status
communicated via the WebSocket.

In the server source code, the current status as
well as the current log text are stored in simple
global variables. As the web server is run under
Twiggy, powered with AnyEvent, there is only one
perl process. Thus the global variables are shared
for all the clients, so they see the same screen,
which is what is required.

The Brand New

Perl Magazine

www.perlmag.com

AUTHORS
WANTED

PerlMag_Ad_Layout 1 25.07.12 14:07

14

Dancer 2 - Official status:
What’s the official status of Dancer 2?
Authors: Damien (dams) Krotkine (dams@cpan.org), Sawyer X (xsawyerx@cpan.org),

Bio Damien (dams) Krotkine

Damien Krotkine is a senior Perl developer and
team leader, vice-president of the French Perl
Mongers, and rock climber. You can read some
of his technical journey discoveries on his low
traffic blog.

Damien is a Dancer core developer.

Bio Sawyer X

Sawyer X is a systems administrator and Perl
developer, involved in various projects (most no-
tably Dancer). He taught a Perl course, worked on
Perl/Android, lectures often, and ambles occa-
sionally on his blog.

Sawyer is a Dancer core developer.

Abstract

This talk will present you with the upcoming
major release of Dancer: Dancer 2. It maintains
the best of Dancer 1 and adds much goodness.
In case you’re using Dancer or considering using
Dancer, and are interested in the status of the
next major version, this is for you.

Dancer is awesome
Dancer is awesome. Srsly!

It’s fun to use, it’s fun to code in. It’s great to
have something so Perlfully beautiful to share
with others. It’s a fantastic feeling to be able
to showcase Perl so effectively to our friends,
our coworkers and our bosses. We’ve had peo-
ple contact us who had never used Perl before
but they want to use Dancer. Indeed not only
is Dancer a great tool to make our lives and
work easier, but it’s also a great Perl marke-
ting tool. Dancer is how Modern Perl looks and
feels like.

Dancer is also a prime example of how to create a
lively, robust community. We can count our wat-
chers on Github (500, which is quite impressive),
but our fork count is even more impressive: 150
forks! This is a ration of 1 to 3 and a third. That
means that (roughly) for every 16 people who
watch the Dancer repo, 5 of them had forked it!
The contributors count is much higher than that,
since we accept contributions from tickets (GH,
RT), the mailing list, personal Emails, IRC mes-

sages (in the channel and privately) and pretty
much any form a user chooses to help out. We
make it a point to be as accessible as possible.
Some contributions were not made to the core,
but to the ecosystem by writing Dancer plugins
which are then available on CPAN.

Dancer has been showcased in newspaper ar-
ticles, magazines, blogs (even outside the Perl
blogosphere), news websites and more. Compa-
nies (such as Shutterstock, Novell, and more)
are using Dancer. We’ve seen government web-
sites, personal blogs, ISPs, wikis, libraries as
just some of the examples of kickass projects for
which people use Dancer.

By any means, we’ve made it!

Let’s talk globals

Dancer does indeed have some set-backs, as any-
thing does. The major issue with Dancer is that
some objects are singletons, which means they
are global. This led to a tricky situation (among-
st others) of not being able to run two Dancer
applications in a single process since they over-
ride each other in various aspects (requests, re-
sponses, serializers, hooks, etc.).

Although We could fix it locally, instead we deci-
ded on something more drastic with a much higher
gain: rewriting the core, correctly. Enter Dancer 2!

What? What’s Dancer 2?

Dancer 2 is a complete rewrite of the core (while
breaking as little as possible) in order to provide
a few key features:

• No globals
Requests, Responses, Serializers, Hooks, every-
thing is a complete lexical object now. This means
that you could create as many Dancer apps as
you want, working on the same process.

• DSL meta layer
The DSL now has a meta layer and is translated
more easily to the object layer of Dancer.

• Clean Internals
The DSL is now built on top of a clean inter-
nal layer, that can be used directly by plugins.
So instead of messing with the guts of Dancer
1 because of the lack of API, plugins can use

15

provided features, with no fear of backward
compatilbility issues.

• Clever object system
We’re using Moo as the object system for Dan-
cer 2, which gives us major speed along with
the benefit of incredible flexibility and plenty of
features.

Dancer 2 also has a few keypoints which make it
very interesting:

• Open to dependencies
Dancer 1 started with very little dependencies,
trying to provide users with more contorl over
the environment on which they are deploying,
and the code they are providing. We’ve main-
tained a very strict stance on this, but since
then things have changed greatly: we’ve
noticed on one hand that Dancer users
do not fear CPAN and enjoy adding plugins straight
from it, and on the other hand we’ve seen tools that
provide much easier installation and deployment for
CPAN distributions (such as App::cpanminus,
carton, App::FatPacker, Pinto, OrePAN, and
more). So, why keep constricting the number of
dependencies?

Dancer 2 is much more liberal and permissive
with dependencies, and uses them whenever we
find the need for them.

• Cooperation with others
There are several web frameworks availa-
ble on CPAN. Some of them like to cooperate,
such as Catalyst and Web::Simple. Working
together (instead of in competition with each
other) allows us to share knowledge, imple-
mentation algorithms and actual code between
us. One major example is the attempt to pro-
mote a substantial feature-rich route defini-
tion between all three web frameworks. This
will make it easier for users to use either one,
move between them (picking whichever they
want according to their given considerations)
and even using them with the same code base!

Dancer 2 is already written!

Alexis Sukrieh (the founder of Dancer) had alrea-
dy written Dancer 2. There might be a few kinks
work out, but these are just the finishing touches.

Dancer 2 development process

Dancer 2’s development is organized a bit diffe-
rently.

• Time-boxed release cycle
We’re starting a time-boxed release cycle, which
means that it will be released on specific inter-
vals, much like it is done in Perl - only more
frequently.

• Policy document
Dancer 2 carries an internal policy document which
we wrote and revise. Once the document is stabi-
lized, it will be available publicly. This document
unfolds our vision for Dancer, making it easier for
contributors and the entire Dancer community to
understand where we’re going with dancer, and how
we intend to get there.

• Coordinators
The development of Dancer 2 is being overseen by
coordinators, each with their own field. This way
we’re able to coordinate efforts of documentation,
compatibility concerns and coding (features,
bugs, and whatnot).

• Compatibility concerns
Dancer 2 features a forward-compatibility layer
in order to prevent breakage as much as possib-
le, but at the same time make it easier for you
to use Dancer 2’s bells and whistles.

We’re also including compatiblity shims to allow
plugin authors to create plugins that work on Dancer
1 and 2 at the same time. Such plugins are already
out there!

We need your help

What’s left for Dancer 2 is transitioning all other
Dancer plugins and user applications. These tran-
sitions will help us flesh out any remaining parts of
Dancer 2 that aren’t covered.

We need help moving all documentation from
Dancer 1 to 2 (while applying the changes being
done) and to document all the incompatibilities
between Dancer 1 and 2, and how to move your
application.

Contact us!

16Practical Dancer: moving away from CGI
Author: Sawyer X (xsawyerx@cpan.org),

Instead of giving a basic short Dancer tutorial, we will be taking a CGI application and rewrite it in
beautiful Dancer.

This will give you an overview of the how Dancer applications look like, how to write them, and how
they differ from boring old ugly CGI code.

Bio Sawyer X

Sawyer X is a systems administrator and Perl
developer, involved in various projects (most no-
tably Dancer). He taught a Perl course, worked on
Perl/Android, lectures often, and rambles occa-
sionally on his blog.

Sawyer is a Dancer core developer.

Abstract

Dancer is a modern micro web framework that
allows creating fast websites with very little ef-
fort.

Considering how comfortable, easy and appea-
ling the new modern web frameworks that exist
on Perl (Dancer being a major example), there
is simply no need anymore for CGI (CGI.pm).
It’s arcane, problematic and hard to work with.

(for more information on that, see lightning talk
CGI.pm MUST DIE!

Converting a CGI.pm application to Dancer can be
scary, since they work quite differently. Hopefully
we’ll be able to make some sense of it, and give
you the proper understanding and tools on how
to transform your old CGI code to fresh Dancer
goodness.

Considerations

These are the things we have to take into account
when we want to convert our application to Dancer.

Path resolving (pretty URLs) and parameters
The first thing you notice in Dancer is the route de-
finitions. It provides the long-sought pretty URLs
everyone is talking about. This is something that
CGI.pm always lacked and in Dancer they are
simply the way it’s done.

 # before
 http://example.com/page=article&id=5

 # after
 http://example.com/article/5

You can see how clean the URL is now. The
difference is that the path implies where
you’re going, instead of specifying it expli-
citly with the variables in the request. It’s
cool, though, because people don’t care about
the variables that you use, and seeing them in
the path is just ugly.

The major benefit here is that you no longer need
to parse this yourself and retain all the logic of un-
derstanding what the user wants. It’s now part of
the path itself, and that includes the parameters
you want (or need) to accept from the user, be-
cause parameters are part of the path in Dan-
cer.

 # before
 my $cgi = CGI->new;

 if (my $page = $cgi->param(‘page’)) {
 if ($page eq ‘article’) {
 # user wants an article
 if (my $id = $cgi->param(‘id’)) {
 # got an id
 } else {
 # problem...
 }
 } elsif ($page eq ‘subject’) {
 # user wants a subject
 if (my $id = $cgi->param(‘id’)) {
 # got an id
 } else {
 # problem...
 }
 } else {
 # invalid path,

 # return 404 or something
 }
 } else {
 # no page requested,

 # is this the main page?
 }

 # after
 get ‘/article/:id’ => sub {
 my $id = params->{‘id’};
 };

 get ‘/subject/:id’ => sub {
 my $id = params->{‘id’};
 };

17

As you can see, using CGI.pm code, you must
check for the parameters, each one separate-
ly, and prepare code for each of these cases,
such as missing parameters and unknown paths.

With Dancer you do not need it. You simply set
the paths you want, including the parameters
you want. If the user reaches the correct paths,
it will run the subroutines you want to run.
Otherwise, it’s all 404s.

You can also make your paths more flexible, by
allowing missing IDs:

 get ‘/article/:id?’ => sub {
 if (my $id = params->{‘id’}) {
 ...
 }
 };

Another beautiful aspect of it is that you can set
up the type checking of parameters in the route
definition itself.

 # before
 if (my $id = $cgi->param(‘id’)) {
 if ($id =~ /^\d+$/) {
 ...
 } else {
 # user provided bad id
 }
 }

 # after
 get qr{/article/(\d+)} => sub {
 my ($id) = splat;
 };

Separated views
In CGI.pm there is often no good separation of
design (the view) and application logic. It’s quite
common to find bits and pieces of HTML and CSS
sitting in your code. Hell, CGI.pm even has
special functions to help you write them.

In Dancer, your views are separated. You have
a views directory that contains all your temp-
lates. You get a layout structure (which you can
disable if you want) automatically. Dancer sets up
the layout independently (and interoperably with
its template engines) so that even if you’re using a
template engine that does not support such
function built in (such as Template::Tiny),
it will still work for you regardlessly. You can
even have Dancer let the template handle
the layout as well, giving you more control
over the templating.

When moving your CGI.pm code, you’ll need to
start thinking of how to order your design and
layout in template files instead of ugly hard-
coded HTML. Think of the templates you need
to exist, and the variables you want to send
them in order for them to act in different ways.

Rendering templates from Dancer is very sim-
ple:

 template index => {
 variable_name => ‘content’,
 additional_variable => $more_content,
 };

Reusability
Dancer stresses reusability, in version 2 even more
so. Instead of centralizing your route decision ma-
king to a single file, you can create multiple files
and add them on. Each file can contain routes of
a specific purpose, and you can set a prefix for
them in order to tie them together.

It’s now easier than ever to set up an admin
path, for example:

 # in Admin.pm
 prefix ‘/admin’ => sub {
 get ‘/view’ => sub { ... },
 get ‘/view/id’ => sub { ... },
 };

Plugins as refactoring
Dancer has a vibrant and warm commu-
nity. It hands out rays of sunshine and
rainbow cookies!

This community has provided a variety of useful
plugins that cut down much of the code you need to
write to accomplish certain tasks such as database
handling (SQL/NoSQL/ORM), SMS sending, Email
sending, LDAP, forms, RSS feeds, I18N, profiling,
caching, email sending, sitemaps, and more!

By using these plugins you can dramatically remove
major amounts of code and use the integrated so-
lutions other people have already provided for you.

Summary

Moving away from CGI.pm does not take long. It
cleans up your code, making it easier to handle,
more extensible and flexible and attractive to
play with, develop, continue work on it, and get
more developers to cooperate on it.

Join the revolution, join Modern Perl!

18Bringing Perl to a Younger Generation
Authors: Paul Johnson (paul@pjcj.net), Wesley Johnson (wes@wes-johnson.com)

Bio Paul Johnson

I have been using Perl for longer than I care to
remember and I’m currently working on a grant
to improve Devel::Cover, the Perl code coverage
module.

Bio Wesley Johnson

I am half way through my ‘A’ level studies, which
include a Computing course.

Abstract

Perl is now almost 25 years old. Some of us
have been using Perl for almost all that time.
Many of us have been using Perl for a sizeable
fraction of that time. And the reason we have
been doing so is because we believe that in tho-
se cases it is the best tool for the job, however
we define ‘best’.

In order for Perl to remain viable it requires a
critical mass of users, and that requires invol-
ving people who are younger than the language
itself.

One way that we have tried to do that is by taking
part in the Google Code-In for the last few years.
This is a programme aimed at introducing students
between the ages of 13 and 17 to open source
software.

Introduction

Programming Paradigms
Learning a programming language well enough to
be proficient in using it is a commitment. It requires
time and effort. Sometimes it is useful to learn a
programming language because it will introduce
us to new ideas and ways of programming. Eve-
ry programmer should know at least one langu-
age from each of the major paradigms: impe-
rative, object oriented, functional and logical.
Each one will allow you to look at problems in a
different manner and when you know them all
you can choose the appropriate way to solve the
problem at hand.

A programmer who hasn’t been exposed to all
four of the imperative, functional, objective,
and logical programming styles has one or more
conceptual blindspots. It’s like knowing how to
oil but not fry.

Tom Christiansen
It’s hard to know lots of languages well, and ge-
nerally we are more productive in the languages
we know best and enjoy the most. For many
of us, Perl is one of our favourite languages,
but in order for Perl to be a viable choice for a
project there are certain requirements.

Language Requirements
The language itself needs to be robust. It should
have features that help the programmer and it
should not be buggy. In addition, the language
should have sufficient libraries available for the
tasks at hand. And there should be a commu-
nity around the language to provide the resour-
ces and support necessary to learn and use the
language, and to ensure that the language and
libraries remain in good condition.

Although many people like to argue otherwise,
Perl meets all these requirements. The core is
solid. It is well maintained and has relatively few
serious bugs. The volunteer and grant recipients
who maintain it do amazing work.

CPAN is widely touted and Perl’s crowning jewel.
The quality may be variable, but you are almost gu-
aranteed to find a high quality module to assist you in
your project.

And the community around Perl is second to
none. Naturally, it is not perfect, but it is vi-
brant, and full of knowledgeable volunteers.

Perl’s Viability
But Perl doesn’t have quite the aura that some other
comparable languages might have amongst some
people. I don’t want to investigate here why that
might be, but it is clear that unless Perl remains
viable as a language, many of us will need to start
considering whether we would be better off choosing
another language for our projects. And compa-
nies will stop using Perl for development which
will mean fewer and less interesting Perl jobs.

Additionally, it is generally advantageous to have
a number of languagescompeting in an area. It en-
courages innovation and copying which benefits all
the languages and their users.

In order to keep Perl viable it requires new
people to start using and eventually contribu-
ting to it. Some of the people at Google have
had similar thoughts about programming and
Open Source Software in general, and for many
years they have been running the Google Sum-
mer of Code programme.

19

This is a programme for university students in which
they can work over the summer in the northern he-
misphere on a specific Open Source project and be
paid for that effort by Google. The Perl Foun-
dation has taken part in this programme almost
every year.

Google Code-In

A few years ago Google started the Google
Code-In programme (GCI). This is a similar pro-
gramme to GSoC, but it is aimed at pre-univer-
sity students between the ages of 13 and 17. It
is held over the northern hemisphere winter and
allows the students to complete a number shorter
tasks of various difficulties for which they receive
points. The students also receive payments for the
tasks they complete, and those who receive the
most points and invited to visit the Google HQ in
Mountain View. The Perl Foundation has taken part in
GCI each year the programme has been held.

Each organisation taking part in GCI provides a num-
ber of tasks in different areas, and categorises the
tasks as easy, medium or hard. Tasks should take
from a few hours to a few days to complete and
students may complete as many as they would
like.

Students claim a task and then get a certain amount
of time to work on it. Within that time they need
to complete and deliver the results of the task.
Each task has one or more mentors who will deter-
mine whether the student has completed the task
and will either confirm that it has been completed or
provide assistance if the student needs it. The men-
tor can also extend the time available if they feel
the student is making progress but requires more
time. If the student cannot complete the task it
is returned to the pool of open tasks and may be
claimed by another student.

Preparation
In October 2011 my son, Wesley, tweeted “Can’t wait
much longer for #gci2011”. ark Keating picked up
on that and replied to him, to Florian Ragwitz and to
me that we should probably get ourselves orga-
nised. So we duly decided on a course of action,
put up a wiki to collect suggestions for tasks and
publicised it as much as we could on mailing
lists, blogs, IRC and twitter.

Our schedule was quite tight. We needed to provide
a credible plan to Google to gain admittance into the
programme, and that involved including a certain
number of tasks in each category. The cate-
gories were Code, Quality Assurance, Research,
Training, Translation, Documentation and Re-
search.

We received a wonderful response from the
community - the first of many - and put together
a proposal which was good enough to persuade
Google to accept us into the programme. Not only
did we receive numerous task suggestions, but
almost all of those who made suggestions also
volunteered to act as mentors for those tasks.
Many were also willing to volunteer to mentor
other tasks.

The Contest
On 21st November 2011, at 08:00 UTC, the contest
started. Students were able to see the tasks and
start claiming them. We set up an IRC channel for
mentors and students with the idea that
there would always be someone around
to help a student who needed a little advice.

With students aged between 13 and 17 it was clear
that many aspects of software development would
be new to them and it soon became apparent that
many would need assistance in working with git
and github, or in understanding that they needed
to edit a template rather than the resulting HTML.
Fortunately, we were blessed with many patient
mentors who were willing to spend their time
assisting the students.

Mentoring
One of the GCI rules was that students could
not work on more than on task at a time. That
meant that as soon as a student submitted a
task they were keen to get it accepted or to find
out what was wrong so that they could either fix
it or move on to their next task. our mentors
were, of course, all volunteers, with jobs that
took priority, who might be in different time zones
to the student and, perhaps, in a few cases,
might even have a life.

We had a group of 50 mentors who went bey-
ond the call of duty in trying to aid all the
students in a timely fashion, but there were
still occasional instances in which students
had to wait a bit longer than they would have
liked to get feedback.

Translations
We noticed a trend quite early on that the transla-
tion tasks were very popular. It’s understandable
why that is. If you are fluent in two languages
the translations can be relatively easy tasks. Wes-
ley is bilingual and was also drawn to those tasks.
This caused difficulties in some organisations
where students sometimes provided translati-
ons that weren’t particularly good, but the or-
ganisation didn’t have mentors fluent in those
languages to be able to notice that. We en-
sured that we a ways had mentors fluent in the
languages for which we had translation tasks,

20

and if we couldn’t provide such mentors we
didn’t offer those tasks.

One of the more difficult aspects of the trans-
lation tasks was that whereas we had a pool
of 50 mentors, the majority of whom were
qualified to mentor on the majority of the
tasks, only those fluent in both English and
the language of the translation were qualified
to mentor the translation tasks. In general we
had two or three mentors per language, and
it turned out that in many cases the transla-
tion tasks required much more mentor input
than we had expected.

Results
In total we had 89 students complete at least
one task. 162 tasks were completed in total
out of 392 which were available.

From the Perspective of a Student

With a large interest in programming among-
st young people, learning how to teach them
about Perl and the community around it is
essential to help to pass on Perl to the next
generation.

We are already trying to do this by participa-
ting in projects such as GCI and GSoC, but
what else can we do to try and encourage
more people to participate in Open Source
projects in general and Perl in particular?

GCI and GSoC do a very good job at encoura-
ging students to get involved in the open sour-
ce community. Using IRC is one of the greatest
helps in my experience, because not only are
the project mentors often online, but so are
other members of the community who are
frequently willing and able to help.

Tutorials
One of the things that helped me getting
started with Perl was watching Gabor Szabo’s
videos on YouTube. They are explained very
well and provide good information for people
who are new to Perl.

For many young people an easy introduction is
very important. When things start becoming
more complex and harder to follow many lose
interest and decide to do something else. It is
important to make sure that any introduction is
easy to follow.

Moving to Perl
Many people also learn to program in lan-
guages such as VB. That is the language
that is taught at my college and despite my

dislike for it and programming in Access, there’s
nothing I can do about it. A great way to make
Perl more relevant for younger people is to provi-
de ‘stepping stones’ from more common languages
such as VB.

The reason many people use Perl is because they
think it is best suited for the work they want to do.
If we know these reasons and are able to share
them, we should do so. Teaching younger people
about the advantages of Perl could encourage them
to use Perl sometime in the future if not straight
away.

In order to pass on our knowledge of Perl to the
‘next generation’, we need to teach them what
makes Perl the most suitable language for our work
and how to start using it. Once these things are
done it should be very easy to help and encourage
more people to use Perl.

Conclusion

In order for Perl to remain a viable language for new
development it requires a critical mass of users.
Encouraging young people to consider Perl and
providing ways to allow them to do that is essential
to ensure the ongoing success of the language.

GCI wasn’t perfect. The programme is still young
and it’s evolving and improving. It required a
great deal of work on our part, but I think that
overall our participation in GCI this year can be coun-
ted a success. We may not have completed as many
of the technical tasks as we would have liked to, but
every task exposed a student to some aspect of Perl.
Even the translation tasks required students to un-
derstand the subject matter and become familiar
with version control at a minimum.

Our 50 mentors deserve the utmost praise for their
selflessness, willingness, skill, patience and tact.
These qualities in such abundance amongst so many
makes it a joy and privilege to count myself a
member of the Perl community. Without their ef-
forts we would never have been able to enter
the programme, let alone complete it. It’s hard
to over emphasise the commitment and effort
put in by so many of the mentors.

I trust that our students found the programme
beneficial; many of them said as much. We may
find some of them contributing to Perl directly in
the future. Most will likely contribute more indi-
rectly by sharing a positive experience with Perl,
by learning how be a part of a successful pro-
ject or by generally enhancing the Open Source
world in general. In short, and without wishing to
appear melodramatic, I believe that such an invest-
ment in the future is in some small way helping to
make the world a better place.

For an open position based at our headquarters in Hamburg, we are looking for a

Software Architect
We are looking for an experienced software engineer to enhance our abilities to design and implement the core
infrastructure on which our agile software development teams build new products, or add new functionality. We
expect you to bring in your expertise to find innovative solutions for sometimes complex technical challenges. As
a member of the architecture team, you will be responsible to ensure the alignment of new components with our
overall architecture.

Summary of Key Responsibilities:

Review and improve existing architecture/infrastructure.
Evaluate and recommend new technology/products to improve the existing ecosystem.
Provide architecture consulting for development projects.
Assume responsibility for scalability/availability and performance.
Implement robust, highly scalable, highly optimized infrastructure components.
Maintenance and improvement of the existing code base.

Required Knowledge, Skills and Abilities:

You have experience in web application architecture (scalability, availability, APIs).
You have experience designing and implementing distributed systems.
You have programmed in several languages (Perl, Ruby, Java, C, C++, JavaScript)
You are passionate about and excel in solving challenging problems.
You are a team player and enjoy sharing knowledge.You are fluent in English.

Plus

Contribution in open source projects
Experience with messaging systems
Experience with mobile applications

What we offer:

Working on a high availability, high performance, high traffic website with more than 12 million users
Working on large, distributed, asynchronous architectures
Team centric software development (pair programming)
We use Open Source software wherever possible and we contribute back
Central location in Hamburg, near the beautiful Alster
Free fruits and beverages

TIP: You can read our XING Blog to gain an insight into our corporate culture, our values
and vision.

XING AG, GŠnsemarkt 43, 20354 Hamburg, www.xing.com

22Asynchronous programming FTW!
Author: Sawyer X (sawyerx@cpan.org)

Asynchronous programming, while seems tricky, once understood, is a useful and comfortable pro-
gramming style that offers parallelism and separation of concerns cleanly.

We’ll start with explaining callback operations, how they work and why they’re super cool. From
there move on to event loops and from there to actual working code.

Reflex, POE, IO::Async and AnyEvent will be showcased.

Bio Sawyer X

Sawyer X is a systems administrator and Perl
developer, involved in various projects (most no-
tably Dancer). He taught a Perl course, worked on
Perl/Android, lectures often, and ambles occa-
sionally on his blog.

Abstract

Asynchronous programming is a useful way of
getting multiple things to run at the same time (for
different values of same time), which is becoming
more and more important.

Asynchronous programming also gives us an
insight into understanding a way of separating
our concerns and interests, creating applica-
tions that have hookable entries and decouple
different considerations properly.

Callbacks

Callbacks are a way to indicate code that will run in
certain events, but doesn’t require asynchronous
programming to be used and be useful. However,
they are a bit hard for people to understand.

The concept is simple. Think of speking to your pa-
rents or friends on the phone, and they need help
using a website. So, uh.. what’s the URL? and you
tell them and they go to the page and then
they ask What do I click now? and you tell
them and now they ask And what do I look
for now? and you start getting angry because
they keep asking you what to do every sing-
le time. Also, you keep having to wait on the
line, but that’s a different kind of angry which
we’ll get to later.

Callbacks would be you telling your parent/friend
what to do in certain cases that occur. For example,
telling them to go to a certain URL and once they
reach it, to click on a certain button and once
they do that, to look for acertain title in the page.

This seems a bit trivial, because that’s what pro-
gramming really is, isn’t it?

 $mech->get($url);
 $mech->click(‘button’);
 if ($mech->content =~ /title/) {
 ...
 }
So what’s the difference? The difference would
be to set it all up in advance.

 $mech->get($url, sub {
 $mech->click(‘button’, sub {
 if ($mech->content =~ /title) {...}
 })
 });

You might be asking yourself what’s the gain of it
all. The gain is multi-fold:

• Running it in a different scope
When we set up the code as a code reference, we
enable it to run from inside the module we’re using
(in this case, WWW::Mechanize) instead of from our
code. This means that $mech can make decisions
and then run our code once it reached a certain
decision (like a success or failure).

This means we can allow others to make the de-
cision for us, perhaps a wiser, more correct de-
cision.

This also means that we can provide opaque code
that will get run without the runner knowing or caring
what they run. This is very crucial to understand,
because it allows us to write code that can be
used in very flexible ways.

Sometimes this is much easier than returning in-
formation, such as when you have a lot of infor-
mation to return (success, fail, reason, additional
information, etc.). You can either do this using mu-
table global-like object attributes (the way Mecha-
nize does it) or you can return a structure like an
object or hash or array - or you can simply provi-
de events that will run cod for the user whenever
each situation occurs and send it the additional
information.

This is extremely useful when we want to make
use of the next point of gain:

23

• Running it in the background
Imagine that conversation again with your parents/
friends. Wouldn’t it be great if you could tell them
to just call you back when something happens
instead of holding on the line with them while they
slowly move their mouse and type one agonizing
letter after the other, waiting for stuff to load while
you feel your life being drained away? Yes, it
would be great!

This is what event loops provide. They allow you to
run stuff in the background and in order to make use
of that, you need to have the code able to not return
anything. In order to do that, we’ll need to pro-
vide as many instructions upfront as we can.

Callback example

 package MyModule;
 sub something {
 my $code = shift;
 my $reply = check_stuff();
 if ($reply eq ‘good’) {
 $code->($reply);
 }
 }

 package main;
 something(sub {
 my $reply = shift;
 print “Good reply is $reply\n”;
 });

Event loops

Event loops run just that: a loop. That loop keeps
checking for events that need to be run, and runs
them. It also provides you with a way to register new
events in the loop.

When we register new events, we provide code to
run. We can start a new user agent and ask to make
an HTTP request, and give it a callback of code to run
once it gets a reply. In that code, we can receive the
headers and make decisions regarding the reply.

Examples

In the lecture you will have examples of several
event loops.

That’s it for now. :)

24Mojolicious
Author: John Scoles (byterock@hotmail.com)

Mojolicious
intro to

Authentication and Authorization

Not part of the framework

Plugins Mojolicious-Plugin-Autentication

Mojolicious-Plugin-Authorization

authentication
You are who you say you are!

Think Like a hacker!!

So many ways to spoil your day

POST/GET

AJAX

RESTful

PUT/DELETE

Mojolicious-Plugin-Authentication

DB LDAPfile Apache '*' Whatever

validate_user

 sub {
 my ($app, $username, $password, $extradata) = @_;
 ...
 return $uid;
 }

load_user

 sub {
 my ($app, $uid) = @_;
 ...
 return $user;
 }

25

plugin 'authentication', {
 autoload_user => 1,

};

validate_user => sub {
 my $self = shift;
 my $un = shift || '';
 my $pw = shift || '';
 my $extra = shift || {};

};

use Authen::Simple::DBI;

my $authDB = Authen::Simple::DBI->new(
 dsn => 'DBI:Oracle:XE',
 username => 'HR',
 password => 'HR',
 statement => 'SELECT password FROM
 brain_slug WHERE slug_id = ?');

return $un
 if ($authDB->authenticate($un,$pw));
return undef;

/auth_1.pl

plugin 'authentication', {
 autoload_user => 1,

 validate_user => sub {
 ...

load_user => sub {
 my $self = shift;
 my $uid = shift;
 return $uid;
 },

/auth_1.pl

authenticate

post '/logon' => sub {
 my $self = shift;
 if ($self->authenticate($self->param('id')
 ,$self->param('pw'),
 ,{brain_slug=>$self->param('slug')})) {

 $self->render('home');
 }
 else {
 $self->render('index');
 }
};

/auth_1.pl

26

is_user_authenticated

get '/home' => sub {
 my $self = shift;

};

$self->redirect_to('welcome')
 unless($self->is_user_authenticated());

get '/welcome' => sub {
 my $self = shift;

 $self->render('index');
};

$self->logout();

logout

/auth_2.pl

current_user

my $user = $self->current_user();
$self->stash('first' = $user->{'first'};

load_user => sub {
 my $self = shift;
 my $uid = shift;

 },

 my ($first,$last);
 given ($uid) {
 when (/fry/) {$first='Philip';$last='Fry'}
 when (/bender/) {$first='Bender';$last='Rodríguez'}
 when (/hermes/) {$first='Hermes';$last='Conrad'}
 };
 return {first=>$first,last =>$last};

<%= $first %> says:

/auth_3.pl

Configuaration

$app->sessions->default_expiration(3600);

$self->plugin('authentication' => {load_user => sub { ... },
 validate_user => sub { ... },

});

autoload_user => 1,

session_key => 'brain_slug',

current_user_fn => 'get_slug',

27

Routes - Conditional

get '/home' => sub {
 my $self = shift;
 $self->redirect_to('welcome')
 unless($self->is_user_authenticated());
 ...

get '/home' => (authenticated => 1) => sub {
 ...

/auth_4.pl

Full App

sub startup {
 my $self = shift;
 ...
 $self->plugin('authentication', {
 ...
});

plugin 'authentication', {
 ...
});

 aa\lib\AA.pm

Routes

$r->route('/login')->via('get')->to('authn#form')->name('authn_form');

$r->route('/login')->via('post')->to('authn#login');

$r->route('/home')->over(authenticated => 1)->to('example#home')->name('home');

 aa\lib\AA.pm

 my $r = $self->routes;
 # Normal route to controller
 $r->route('/welcome')->to('example#welcome');

28

Routes

$r->route('/login')->via('get')->to('authn#form')->name('authn_form');

$r->route('/login')->via('post')->to('authn#login');

$r->route('/home')->over(authenticated => 1)->to('example#home')->name('home');

 aa\lib\AA.pm

 my $r = $self->routes;
 # Normal route to controller
 $r->route('/welcome')->to('example#welcome');

sub home {
 my $self = shift;
 my $user = $self->current_user();
 $self->stash(first => $user->{'first'});
}

Controller

aa\lib\AA\Example.pm

aa\lib\AA\Authn.pm

sub form {
 my $self = shift;
}

sub login {
 my $self = shift;

}

 if ($self->authenticate($self->param('id')
 ,$self->param('pw'),
 ,{brain_slug=>$self->param('slug')})) {

 $self->redirect_to('home');
 }
 else {
 $self->redirect_to('authn_form');
 }

New Controller

package AA::Authn;
use Mojo::Base 'Mojolicious::Controller';

29

Even More Routes

 aa\lib\AA.pm

$r->route('/home')->over(authenticated => 1)->to('example#home')->name('home');

$r->route('/slug')->over(authenticated => 1)->to('example#slug')->name('slug');

...

$r->route('/cat')->over(authenticated => 1)->to('example#cat')->name('cat');

$r->route('/dog')->over(authenticated => 1)->to('example#dog')->name('dog');

...

Bridge

 aa\lib\AA.pm

$r->route('/home')->over(authenticated => 1)->to('example#home')->name('home');

my $rn = $r->bridge->to('authn#check');

$rn->route('/home')->to('example#home')->name('home');

$rn->route('/slug')->to('example#slug')->name('slug');

$r->route('/logout')->to('authn#delete')->name('authn_delete');

aa\lib\AA\Authn.pm

sub check {
 my $self = shift;
 $self->redirect_to('authn_form') and return 0
 unless($self->is_user_authenticated());
 return 1;
}

sub delete {
 my $self = shift;
 $self->logout();
 $self->redirect_to('authn_form');
}

Controller

�0

aa\templates\lib\slug.html.ep

% layout 'default';
% title 'Slug';

My Slug

Make all hosts go to the brain slug planet!

% my $user = $self->current_user();

My Host is <%= $user->{last} %>,<%= $user->{first} %>

Click here to log out!

On a Template

Authorization

What you can or cannot do!

Identify trust boundaries Identify trust boundaries Consider the granularity of your authorization Consider granularity

White-List Black-List

Declarative Programmatic

User-------->
Can Play

Role-----> Privilege
Has

<------Action
Needs

Role-Based Access Control (RBAC)

Mojolicious-Plugin-Authorization

 sub {
 my ($app, $privilege,$extradata) = @_;
 ...
 return 1|0;
 }

has_priv

is_role

sub {
 my ($app, $role, $extradata) = @_;
 ...
 return 1|0;

 }

�1

privileges

 sub {
 my ($app,$extradata) = @_;
 ...
 return $privileges|@privileges|%privileges;
 }

role

 sub {
 my ($app,$extradata) = @_;
 ...
 return $role|@role|%role;
 }

Mojolicious-Plugin-Authorization

az\lib\AA\Abstract\Profile.pm

package Abstract::Profile;
...

 my $self = shift;
 my ($opt) = @_;
 my $dbh = DBI->connect('dbi:Oracle:XE','hr','hr');

 my $sth = $dbh->prepare('select first_name,
 middle_name,
 last_name,
 role
 from brain_slug
 where slug_id=:p_id');

...

New Class

package AA::Authn;
use Mojo::Base 'Mojolicious::Controller';

...

if ($self->authenticate($self->param('id')
 ,$self->param('pw')
 ,{brain_slug => $self->param('slug')})) {

 $self->redirect_to('home');

 }
 else {
...

az\lib\AA\Authn.pm

 my $profile = Abstract::Profile->new({id => $self->param('id')});

$LOGGED_IN{$profile->id()} = $profile;

use Abstract::Profile;

our %LOGGED_IN = ();

�2

package AA::Authn;
use Mojo::Base 'Mojolicious::Controller';
use Authen::Users;
our %LOGGED_IN = ();
...

if ($self->authenticate($self->param('id')
 ,$self->param('pw')
 ,{brain_slug => $self->param('slug')})) {

 my $authn = Athen::Users->new({dbtype=>'SQLite',dbname=>'slug'});
 my $profile = $authn->user_info($self->param('id'));
 $LOGGED_IN{$profile->user()} = $profile;
 $self->redirect_to('home');

 }
 else {
...

az\lib\AA\Authn.pm

az\lib\AA\Authn.pm

sub check {
 my $self = shift;

}

if ($self->is_user_authenticated() and
 $LOGGED_IN{$self->session('auth_data')}){
 return 1;
 }

$self->logout();
$self->redirect_to('authn_form');
return 0;

sub delete {
 my $self = shift;

 $LOGGED_IN{$self->session('auth_data')}=undef;
 $self->logout();
 $self->redirect_to('authn_form');

}

az\lib\AA\Authn.pm

��

sub startup {
 my $self = shift;
 ...
 $self->plugin('authorization', {

 ...

 aa\lib\AA.pm

 is_role => sub {
 my $self = shift;
 my ($role, $extradata) = @_;
 my $user = $self->current_user();
 return 1
 if ($user->role() eq $role);
 return 0;
 },

has_priv => sub {
 my $self = shift;
 my ($priv, $extradata) = @_;
 my $user = $self->current_user();
 return $user->can_i($priv);
 },

sub startup {
 my $self = shift;
 ...
 $self->plugin('authorization', {
 ...

 });
...

 aa\lib\AA.pm

user_privs => sub {
 my $self = shift;
 my ($extradata) = @_;
 my $user = $self->current_user();
 return keys(%{$user->can()});
 },

user_role => sub {
 my $self = shift;
 my ($extradata) = @_;
 my $user = $self->current_user();
 return $user->role();
 },

aa\lib\AA.pm

sub startup {
 my $self = shift;
 $self->plugin('authentication', {

...

 autoload_user=>1,
 load_user => sub {
 my $self = shift;
 my $uid = shift;
 return $AA::Authn::LOGGED_IN{$uid}
 if ($AA::Authn::LOGGED_IN{$uid});
 return $uid;

�4

aa\lib\AA.pm

 $rn->route('/die')->over(is =>'dead')->to('example#delete')->name('die');

 $rn->route('/drop')->over(has_priv =>'detatch')->to('example#drop')->name('drop');

aa\lib\Example.pm

sub delete {
 my $self = shift;
 $self->logout();
 $self->render('example/dead');
}

Conditional Routes

aa\lib\AA.pm

 my $feed_only = $rn->route('/feed')->over(has_priv=>'feed')->to('example#feed');

foreach my $size ((qw(little some all))){

 $feed_only->route($size)->to("example#$size");

}

More Complex Routes

aa\templates\lib\slug.html.ep

...

My Slug

Make all hosts go to the brain slug planet!

Click here to log out!

% if ($self->has_priv('feed')) {
 Click here to feed on a host!

%}

On a Template

�5

aa\templates\lib\slug.html.ep

% layout 'default';
% title 'Slug';

My Slug

...

% if ($self->is('king')) {
 Click here to control all slugs!

%}

On a Template

Resources

http://mojolicio.us/perldoc/Mojolicious/Lite

http://mojolicio.us

Mojolicious::Plugin::Authorization

Mojolicious::Plugin::Authentication

https://github.com/byterock

John Scoles

byterock at hotmail.com

Thanks to;

 Ben van Staveren (madcat)

 Sebastian Riedel (sri)

36

Bio Lenz Gschwendtner

Lenz is a geek living at the edge of the world
and loves tinkering with code. He co-founded
a domain registrar called iWantMyName and is
involved in several other early stage startups
either directly or as a mentor. Lenz used to live
in Germany and Austria but left the northern
hemisphere to enjoy his live at the far end of
the world.

He is currently playing with CouchDB, Rabbit-
MQ, Redis, Mojolicious and has a keen interes-
ted in the lean startup methodology.

Abstract

A fast moving Startup should always try to au-
tomate as much as possible and maintain cont-
rol in form of automated tools that report eve-
rything you need to know at any given time.

This includes testing and releasing code!

Githublicious https://github.com/norbu09/
githublicious progressed out of the desire to
have one platform written in perl that replaces
Jenkins, Capistrano and a whole raft of hacked
crons that all did very specific things.

Githublicious is a Mojolicious application that
acts as a post commit endpoint for github and
can trigger test runs and deploys. Githublicious
also acts as a continuous testing platform and
helps to ensure that the whole application stack
is in fact working as it should.

Continuous deployment with Perl
Author: Lenz Gschwendtner (lenz@springtimesoft.com)

Continuous Deployment is a big topic if you want to push out code to production as fast as possible.
The little pitfall is that it is not that straight forward if you want to use a PP approach. We at iWant-
MyName came up with a pure perl tool chain all the way from your git repository via integration
testing to deployment on your production servers.

It is based on Planet Express Ship https://github.
com/norbu09/planet-express-ship and uses
CouchDB as the data store. Planet Express Ship
is a rapid prototyping platform that we develo-
ped on top of Mojolicious and CouchDB to quic-
kly write anything from a simple tool to a ful-
ly working startup idea. Githublicious brings in
Giovanni https://github.com/norbu09/Giovanni
and TheEye https://github.com/norbu09/TheEye,
both projects that I use for deployment and mo-
nitoring in production with a few of my projects.

Giovanni is used as a replacement for the Ruby
based Capistrano and acts in much the same
way. We currently deploy Catalyst, Mojolicious
and Erlang based applications with Giovanni, eit-
her directly or through githublicious.

TheEye is a monitoring system that is based on
Perl tests. In fact, any language is fine as long as
the output is TAP. We use it with PhantomJS to
test javascript heavy pages as well as with plain
perl tests. We use TheEye a lot in very different
situations from monitoring SSH tunnels to full
walk throughs of websites where we tests every
button.

In githublicious those tools help with automated
deployment and continous testing.

37Array programming for mere mortals
Author: Bernd Ulmann (ulmann@vaxman.de)

Bio Bernd Ulmann

Born on July, 19th, 1970 (the same year the PDP
11 was introduced), studied mathematics and
philosophy, dissertation about analog computing,
professor for business computer science at the
FOM in Frankfurt/Main. Spends most of his spa-
re time collecting and restoring old computers
(PDP 11, VAX and of course analog computers),
building analog electronic circuits or writing pro-
grams in Perl, APL, Lang5 to solve (or create)
problems that are ideally of no commercial inte-
rest but fun and illustrative to tinker with.

Abstract

A small niche in the programming language eco-
system is inhabitated by so called array langu-
ages, APL being the most famous of those. Array
programming is based on a rather unusual pa-
radigm that allows one to solve many problems
with next to no loops and much fewer condi-
tionals than with traditional languages. Some of
APL’s ideas and features already made their way
into Perl 6 and via some modules into Perl 5 as
well. The following paper gives a short introduc-
tion to the basic ideas of array programming and
describes the use of Array::APX -- a module of-
fering some basic array functionality to Perl 5
users.

Basics

The main idea of array programming is to ex-
tend typical scalar operations to work transpa-
rently on n-dimensional arrays. This idea dates
back to 1957 when Ken Iverson published his
seminal book titled A Programming Language,
(APL for short). What was originally intended as
a new mathematical notation turned out to be
quite well suited as a programming language,
too. Since its inception, APL had strong propo-
nents as well as strong opponents with (more or
less good) arguments on either side.

The main reason why APL did not become a main-
stream language (There are areas where APL is
used quite heavily like in the financial industry.)
is its arcane character set. Iverson made use of a
plethora of unusual signs that were a nightmare
for [the] typist [...] and impossible to implement
 with punching and printing equipment current-
ly available. Although this has become less of a
problem with current GUIs it still scares away
most programmers since a typical APL program
does not look like anything one most probably

has seen before -- in fact, it does not even look
like a computer program. The following line is an
actual APL program that generates a list of pri-
mes (More on this later but then using Perl and
Array::APX.):

Obviously the APL notation is kind of weird. Never-
theless it turned out that the main idea of having
n-dimensional data structures as the basic items
to operate on is very powerful and thus many of
today’s languages support array programming
primitives to at least some degree. Perl 6 alrea-
dy incorporates quite some of this functionality
and for Perl 5 there are -- apart from the builtin
map and grep etc. -- packages like List::Util
that contain basic functions like reduce (There
is also the Perl Data Language, PDL for short,
http://www.drdobbs.com/pdl- the-perl-data-lan-
guage/184410442 for example.) etc.

During the last couple of years, Mr. Thomas Kratz
and the author developed an interpreter for a
stack based array language, Lang5 (Cf. http://
lang5.sf.net.), that is completely implemented
in Perl. As a side effect of this, a Perl module,
Array::Deeputils, was written that contains all
of the basic array functionality of Lang5.

After experimenting and working with Lang5 for
quite some time, the idea emerged to make the
functionality of Array::Deeputils available to
Perl 5 users in a more natural way which trig-
gered the development of Array::APX, the Ar-
ray Programming eXtensions for Perl which will
be described in the following.

Array::APX Basics

First of all, Array::APX overloads some of the
basic Perl operators to work on nested arrays.
As an example, let us build the element-wise
product of two vectors:

 use strict;
 use warnings;
 use Array::APX qw(:all);

 # Create two vectors [1 2 3]
 # and [4 5 6]:
 my $x = iota(3) + 1;
 my $y = iota(3) + 3;

 # Multiply both vectors and
 # print the result:

 print $x * $y;

38

This short program first generates two three-
element vectors using the iota function of
Array::APX (It is named after ι in
APL.=. iota $value works like (0 .. $value
- 1) and returns a blessed reference to the
resulting array (The function dress allows
one to bless any nested array into an APX
object, so one could also have written $x =
dress([1, 2, 3]); instead of $x = iota(3)
+ 1;. To get rid of this dress, the strip-
Function can be used.).

All unary and binary operators that are over-
loaded within Array::APX are automatically
applied in an elementwise fashion to the ope-
rands of the operator. In this case the multipli-
cation is performed on the three elements of
both vectors which yields [3 8 15] as a result.
Table 1 lists all unary and binary operators that
Array::APX provides.

Most of these operators are self-explanato-
ry and will work as described on APX-data
structures. Apart from the stringification the
first special operator is / which implements
either a division operation or a reduce ope-
rator depending on its context (/ was chosen
to represent the reduce operator since this
symbol is used in APL for the same purpo-
se.). Two APX-data structures $x and $y may
be divided by simply writing $x / $y. If the
left hand side of / is a subroutine reference
and the operand on the right is an APX-struc-
ture, it will be reduced by applying the sub-
routine between each successive element.
Thus computing $\sum_{i=1}^{100}i$ can
be done like this, yielding 5050:

 use strict;
 use warnings;
 use Array::APX qw(:all);

 # Create a vector [1 .. 100]:
 my $x = iota(100) + 1;

 my $adder = sub {$_[0] + $_[1]};
 print ‘The sum of all elements is ‘,
 $adder / $x, “\n”;

The next unusual operator is | that implements a ge-
neralized outer product if not used as a binary or like
this (here a basic multiplcation table will be gene-
rated) (Being a generalized outer product operator,
| can work with any binary function, not just with a
multiplication.):

 use strict;
 use warnings;
 use Array::APX qw(:all);

 my $x = iota(10) + 1;
 my $m = sub {$_[0] * $_[1]};

 print $x |$m| $x;

The resulting multiplication table looks like this
(thanks to the stringification):

39

[
 [1 2 3 4 5 6 7 8 9 10]
 [2 4 6 8 10 12 14 16 18 20]
 [3 6 9 12 15 18 21 24 27 30]
 [4 8 12 16 20 24 28 32 36 40]
 [5 10 15 20 25 30 35 40 45 50]
 [6 12 18 24 30 36 42 48 54 60]
 [7 14 21 28 35 42 49 56 63 70]
 [8 16 24 32 40 48 56 64 72 80]
 [9 18 27 36 45 54 63 72 81 90]
 [10 20 30 40 50 60 70 80 90 100]
]

The last special operator to be described is scan,
denoted by x. Scan applies a function to the ele-
ments of a vector but does not reduce the vec-
tor to a scalar. The following program example
shows this mechanism. It generates a vector of
the first ten squares by computing partial sums
of a vector [1 3 5 7 9 11 13 15 17 19], yiel-
ding 1 as the first result vector element, 1 + 3
as the second, 1 + 3 + 5 as the third and so
on:

 use strict;
 use warnings;
 use Array::APX qw(:all);

 my $x = iota(10) * 2 + 1;
 my $a = sub {$_[0] + $_[1]};

 print $a x $x;

The result of this is the vector [1 4 9 16 25 36
49 64 81 100].

Shapes

A nested array is characterized by its associated
dimension vector, i.e. a vector that represents
the number of elements of the array for each
of its dimensions. The rho function is used to
either determine the dimension vector of a data
structure or change the shape of a data struc-
ture according to a given dimension vector.

Changing the shape (reshaping) will first flatten
the structure supplied as the argument and then
rearrange the elements to form the desired data
structure. If this destination structure needs
more elements than the original structure, its
elements are reread from the beginning of the
flattened list. In the extreme case, rho can be
used to create a nested structure out of a single
element vector that will be repeated over and
over to fill the resulting array.

 use strict;
 use warnings;
 use Array::APX qw(:all);

 # Create a 3-times-3 matrix out
 # of a nine-element vector:
 my $vector = iota(9) + 1;
 my $dimensions = dress([3, 3]);
 my $matrix = $vector->rho($dimensions);

 print $matrix;

 # Create a 2-times-2 matrix and
 # determine its dimension vector:
 my $my_matrix =
 dress([[1, 2], [3, 4]]);
 my $my_dimension = $my_matrix->rho();

 print $my_dimension;

This program prints

[
 [1 2 3]
 [4 5 6]
 [7 8 9]
]

as the result of using rho to reshape a structure and
[2 2] as the result of rho being used to determine the
structure of $my_matrix.

If one needs a 2-times-2-times-2 matrix of 1-ele-
ments for example, this could be accomplished by
dress([1]->rho(dress([2, 2, 2])) making use of
the fact that rho will repeat the elements of the
input data structure as often as necessary to fill
the output structure.

Sometimes it is necessary to flatten a nested data
structure -- although this could be accomplished
using rho with a one element dimension vector,
this can be done more easily using collapse. Thus
$matrix->collapse()would return a vector
containing all matrix elements.

Selecting elements etc.

Array::APX supplies some functions to address,
select and otherwise access elements of nes-
ted structures. These are in particular the fol-
lowing:

in:
This is the set theoretic element-of operation.
It tests if elements of a data structure are con-
tained in another data structure and returns a
boolean result vector. Its inverse function is

select:
This selects elements from a vector controlled
by a boolean selection vector.

40

index:
This function returns an in-
dex vector denoting the
position of elements of a given data structure
in another structure.

subscript:
This function selects elements from a nested
data structure, controlled by an index vector. Its
inverse function is

scatter:
Using scatter it is possible to place elements
at specific positions in a multidimensional
data structure.

remove:
Removes elements controlled by an index
vector.

reverse:
Reverses the sequence of elements in an
APX-structure.

rotate:
Generalized rotation along several axes of a
multidimensional data structure.

slice:
Extracts slices from a data structure. The
only restriction is that the slice being ex-
tracted can not be of a higher dimension than
the source data structure.

transpose:
Transposes a structure along any of its axes.

Examples

Remember the arcane APL example from the
very beginning? It computes a list of prime
numbers up to a value stored in a variable R.
The basic idea which is very elegant but quite
resource intensive works like this:

1. Create a vector with unit stride running
from 1 to R.

2. Remove the first vector element, so the
resulting vector has the form (2 .. R).

3. Create a multiplication table using two of
these vectors with the multiplication as basis
operation. This table has the special property
that it does not contain any prime numbers
since all of its entries are the product of at
least two primes.

4. Use the set-theoretic in function to determine
which elements of the vector are not contained in
the matrix. These elements are the prime numbers
we are looking for.

5. Using the inverted result of the in operati-
on, select the prime elements from the vector.

Using Array::APX this can be implemented as fol-
lows to generate a list of prime numbers between
2 and 199:

 use strict;
 use warnings;
 use Array::APX qw(:all);

 my $f = sub { $_[0] * $_[1] };
 # We need an outer product
 my $x;

 print $x->select(!($x = iota(199) +2)
 ->in($x |$f| $x));

The first two steps of the algorithm described abo-
ve are accomplished with $x=iota(199) + 2. The
resulting $x is then used to create the multiplica-
tion table with $x |$f| $x. Using in, a boolean
selection vector is created which is inverted using
! and used to select the prime number elements
from $x.

As elegant as this method is, it is quite resource
intensive since a square matrix is needed which
contains a lot of products which are not necessary
to generate the list of primes. Although this matrix
can be shortened a bit (Restricting the matrix to
run from 2 to sqrt($x) would not work! Why?),

it would be (a bit) faster to perform trial divisions
up to sqrt($x).

The following program checks if a given number $x
is prime by

1. creating a vector of the form [$x $x ..$x]
containing sqrt($x) elements and then

2. dividing this vector by the vector [2 3...
sqrt($x)].

3. A prime number will only be divisble by 1. Thus
reducing the result vector of the %-operation follo-
wed by == 0 must yield 1 for a prime number.

4. Implementing this using Array::APX yields a
program snippet like this:

 my $limit = int(sqrt($x));
 my $adder = sub{$_[0] + $_[1]};

 my $is_prime =
 $adder / (
 # Create [$x $x $x...]

41

 dress([$x])->rho(dress([$limit]))
 % # modulus
 # [1 2 3 ... sqrt($x)].
 (iota($limit - 1) + 2)
 == 0 # Where was it divisible?
) == 1;

Conclusion

Using Array::APX it is possible to explore the
ideas of array programming within the comforting
environment of Perl 5. It has turned out to be of
great value in education since today’s students
are already accustomed to languages like Perl
(Early attempts using a real APL interpreter in
class were not that successful since the students
first had to learn the notation. Then they had to

memorize the keyboard layout and adapt to the
APL environment. The typical class schedule just
did not leave enough room to accomplish that.).

Bibliography

A Source Book in APL, APL PRESS, Palo Alto,
1981

Ken E. Iverson, Formalism in Programming Lan-
guages, in [1] [pp. 17 -- 25]

Ken E. Iverson, Notation as a Tool of Thought in
[1][pp. 105 -- 128]

42

Bio Nuno Ramos Carvalho

Nuno Ramos Carvalho is currently doing a PhD
in computer science at University of Minho. He
is currently also president of the Portuguese
Association for Perl Programmers, and has been
using and advocating Perl for almost ten years.

Bio Alberto Simões

Alberto Simões has used Perl for more than ten
years. He is the maintainer of more than a do-
zen Perl modules and one of the five Dancer
core developers. He works as a computer sci-
ence teacher, and has a PhD in Natural Langua-
ge Processing.

Bio José João Almeida

José João Almeida is currently an assistant pro-
fessor at University of Minho, and is a lecturer
in many computer science courses. He has been
using and teaching Perl for more than ten years,
he also develops and maintains a wide range of
Perl modules and tools.

Abstract

An ontology is a formalist that can be used to
represent knowledge, describing information as
concepts and relations between these concepts.
The adoption of these formalisms has increased
in the last years, and are used in many fields
like artificial intelligence and software enginee-
ring, or in the semantic web. Mainly in situations
where relational databases (or more recently
no-SQL solutions) may not be the most fit ap-
proach to store and manipulate data.

This article introduces how ontologies can be
exploited to create rich applications using Perl.
How we can store information using ontologies,
retrieve and update information, infer new
knowledge, and produce any arbitrary side ef-
fect. This is achieved by embedding small snip-
pets of code written in a domain specific langu-
age inside Perl programs.

Introduction

Many flavors of programming languages and
paradigms are available today. Before writing
a program, one valid and pertinent question is

which programming language to choose or pa-
radigm to use. Most of the times a general pur-
pose programming language is adopted, like
C/C++, Perl or Java. These languages are ge-
neral purpose in the sense that they were not
designed to solve problems in specific domains
and can, theoretical, be used to perform any
task.

This is a positive attribute, but what can quic-
kly became obvious is that since these langu-
ages are so general and act a bit as a swiss
army knife, they quickly become inefficient for
some specific problems. Inefficient not only
performance wise but also linguistic wise, i.e.
a lot of complex code is required to perform
a rather simple task in a specific domain.
To overcome this inefficiency, Domain Speci-
fic Languages (DSL) are usually used. These
languages are designed and optimized to solve
particular sets of problems, meaning that wri-
ting programs to solve real world problems can
be difficult or even impossible.

A good solution would combine both ap-
proaches, programs could be in their grand
majority written using a general purpose pro-
gramming language, taking advantage of their
usual tools and libraries, and glued together
small snippets of code written in a well defi-
ned set of (small) DSL to perform tasks in very
specific domains. This would ensure language
efficiency throughout the code. But the compi-
ler would have to cope with different languages
in the same program, which means that pro-
bably different parsers will be needed, different
intermediate representations will be used, or
even different compilation workflows would be
required. Some well known problems emerge
when several programming languages are
mixed together in a single program, for exa-
mple: parsers need to handle more than one
language efficiently. This article advocates a
simple approach for language weaving, it intro-
duces a domain specific language to manipulate
ontologies, and illustrates how the combination
of this DSL with Perl allows writing elegant and
easy to maintain ontology aware applications
that can be used to solve real world problems.

Ontology Manipulation Language (OML) is a
DSL that can be used to describe operations
that manipulate information represented in an
ontology. There are many different ways to
define and represent an ontology, this work
assumes a rather simplistic definition: a set
of terms and relations between these terms.

Ontology Aware Applications
Author: Nuno Ramos Carvalho (smash@cpan.org), Alberto Simões (ambs@cpan.org), José
João Almeida (jj@di.uminho.pt)

43

More details about this can be found in. OML
is a rule-based programming language, a pro-
gram is a set of rules that are executed in order.
Each rule uses as its left hand side a pattern
that should be searched in the ontology, and as
its right hand side, an action to be performed.
Patterns describe information, terms, relations
between terms, or any combination of these that
can be found in the ontology. Actions describe
the arbitrary operations that are to be executed
when patterns are found, this includes not only
operations on the ontology itself (changing its
terms, relations, etc.), but also producing any
arbitrary side effect.

Although many interesting programs can be
written using only OML, real applications can be
hard or impossible to implement. Given that this
language was designed to solve problems in a very
specific domain -- ontologies -- it does not provi-
de any syntax or methods to perform many sim-
ple tasks required to solve real world problems.

This was the main motivation for weaving OML
snippets in Perl programs, taking advantage of
Perl’s typical tools and libraries, but allowing the
user to describe operations elated with ontolo-
gies in OML.

To better explain the OML language and its wea-
ving into Perl, starts by introducing the OML
syntax and illustrating some simple examples,
and gives a brief overview about the OML com-
piler. This allows the reader to understand how
the DSL works, and therefore, be able to bet-
ter follow the discussion about its weaving into
the Perl programming language. Examples will
present some simple tools that were built based
on

the ability to mix these two languages and finally,
in Conclusion we will confer about OML relevance,
and the advantages that arose from its weaving
with a general purpose programming language.

The OML Language

This section briefly describes OML, it’s syntax
and how semantic actions can be defined to pro-
duce different type of results. OML is a simp-
le language. One of the major goals during its
design was to make sure that it would be easy
and intuitive to learn and use, even for people
without any programming skills background.

In a nutshell, OML programs are a sequence of
statements which are evaluated in order. Each
statement consists in a pattern block, every-
thing on the left side of the fat-arrow operator
(→), and an action block, everything on the
right side. Each statement always ends with a
single dot (.), as shown here:

 pattern → action ~ .

Patterns

Patterns are used to describe knowledge that
exists in the ontology, they are used to rep-
resent simple collections of terms or relations
between terms, or even combinations of the-
se. If the pattern matches the ontology the
corresponding action block is executed. Table 1
illustrates some patterns that illustrate what can
be used.

44

The most simple pattern that can be defined
is a single term or a single relation. Pattern
1 shown in Table 1 will evaluate as found if
there is a term in the ontology named Bus-
ter. A single relation is shown in in Table 1,
Pattern 2, this pattern will evaluate as found
if there is at least one relation named ISA in
the ontology. Variables can be used instead
of terms, or relations names. So, Pattern 3
shown in Table 1 describes all the terms in
the ontology, and Pattern 4 represents all
the relations. Of course that more interes-
ting would be to describe facts, relations
between terms, a very simple example of a
pattern that describes a fact is Pattern 5 in
Table 1. This pattern is considered found if
the term Buster and the term cat are linked
by a relation named ISA.

Variable containers can also be used in pat-
terns, which means that the pattern can
be found more than once for a given on-
tology. Pattern 6 in Table 1 is one possib-
le example. This pattern represents all the
facts that relate the term cat with any other
term by a relation named ISA. Another exa-
mple of using variable containers is Pattern
7 in Table 1. This pattern represents all the
possible combinations of facts that relate
terms with the ISA-relation.

Patterns can be grouped together using the
binary operators AND and OR, which have their
traditional meaning. Patterns paired with
the AND operator will be evaluated as found
if both patterns are found, and if they are
paired with the OR operator only one needs
to be found in the ontology for the pattern be
evaluated as found. Patterns 9, 10 and 11 in
Table 1 illustrate this.

Actions

After being able to specify the patterns we
are looking for in the ontology we need to
describe the operations that are going to be
executed when the pattern is actually found.
Any number of operations can be executed in
an action block. Operations are executed in
order and can be one of the following types:

an operation from the predefined
list of operations available, this is ty-
pically used to add or change the cur-
rent knowledge on the ontology, for
example adding or removing terms
or relations;

•

or we choose to define our own operation,
and write the complete code, this is typically
used to produce any arbitrary side effect, up-
dating a data base, printing, creating a PDF file
or anything else.

An example, of using a predefined operation can
be:

 add(Buster ISA Mammal)
This adds new information to the ontology, specifi-
cally relating the term Buster with the term Mam-
mal using the relation ISA. Variables found in the
pattern can also be used in the action side of any
statement, having their values instantiated accor-
ding to the pattern found, which means we can write
an action block that looks something like:

 add($pet ISA Mammal)

As advertised before we can also produce any side
effect, by executing any arbitrary action, for exa-
mple:

 sub {
 print “Found a term: “ . $name;
 }

The sub keyword has a special meaning in OML, it
means that the following action block is a user defi-
ned operation and that needs to be executed as is.
At the current time this block needs to be written
in the programming language Perl, so this works
pretty much as an anonymous function that is cal-
led later by the Perl interpreter executing the code.
Remember that any side effect can be produced
using this approach (anything that can be imple-
mented in Perl at least), for example adding infor-
mation to a relational database:

sub {
 $db->execute(
 “INSERT INTO terms (name)” .
 “VALUES ($term)”
);
}

Rules

Putting everything together we can write state-
ments (rules) that look like:

 $city CAPITAL $country =>
 add($city ISA city)
 add($country ISA country).

This statement says that for every two terms linked
by a relation named CAPITAL add two new relations
linking the first term with the term city by a re-

•

45

lation ISA, and the second term with the term
country also by a ISA relation. Imagine a geo-
graphical ontology describing information about
cities and countries, in more loosen English this
statement reads: for every city which is a ca-
pital, add a fact stating that city is a city, and
country is a country.

This is just a brief overview of what can be writ-
ten in OML, a more exhaustive and complete in-
troduction to the language can be found in my
thesis.
The OML Compiler

The OML stand-alone compiler (or probably, more
correctly, interpreter) takes as input a program
written in OML and an ontology, and produces an
arbitrary result, as illustrated in Figure 1 (left).
Keep in mind that in this section we are talking
about the OML specifi c compiler, which we feed
a program completely written in OML.

Besides the OML program itself, an ontology is
also required as input. Currently there is only
one backend for ontology processing available,
this implies the use of ISO 2788 to represent
the ontology. Of course other backends can be
implemented to allow ontologies stored in other
formats. The compiler interprets the rules in the
program, tries to match the patterns described
against the ontology, and acts accordingly with
found matches and described actions produ-
cing an arbitrary result. Executing a program
is divided in three main stages illustrated in
Figure 1 (right):

The Parsing Stage In this stage the par-
ser iresponsible for analyzing the source pro-
gram written in OML, and create a parsing tree
(pTree). This tree contains the same informati-
on that is in the source program but in a more
structured way.

The Expanding Stage After creating a pTree
the control is handled to the expander engine,
which is responsible for trying to match the pat-
terns described in the pTree. The matching re-
sults, and all possible instances of the pattern in
case variable containers are used, are stored in
a Domain Instantiated Tree (diTree).
The Reaction Stage Finally, the reaction engi-
ne is responsible for actually executing the ac-
tions described in the initial program. This engi-
ne uses the diTree to instantiate the variables
found in the action blocks for each statement,
and executes the corresponding execution block
for every match found.

Although this compiler can be used by itself, its
main purpose is to be used by other tools, like
the weaving of OML into Perl described in the
next section. This is mainly because real world
applications often have to deal with other tasks
which are outside of the ontology domain

(updating databases, handling HTTP requests,
etc.) that can be hard to implement using only
OML.

The current implementation of the OML com-
piler (still under development) is available on
CPAN (http://search.cpan.org/dist/Bi-
blio-Thesaurus-ModRewrite/).

Weaving OML in Perl Programs

In this approach we consider one language to act
as the hosting language, and the other as the
hosted language: the DSL is the hosted langu-
age (OML in this specifi c case), and the general
programming language is the hosting language
(Perl in this specifi c case).

ResultCompiler

ontology

parser

expander

reactor Result

pTree

diTree

ontology

Program

Program

46

Instead of trying to handle several langu-
ages parsing and execution flows, we trans-
form code written in the hosted language in
a compilation unit that can be recognized and
executed by the hosting language. And then
use the compiler for this language to run the
program, while keeping this transformation
hidden from the programmer. Note that we
do not completely rewrite the OML code in
Perl, we just transform it so that is valid Perl
syntax, and the tasks implemented in OML
can be called by the Perl compiler.

Using this approach the application can be writ-
ten in Perl, and use OML to describe the opera-
tions that deal with ontologies weaved inside the
program. In practice this is done by enclo-
sing OML code between the OML and ENDOML
special tags:

#!/usr/bin/perl

Perl code here
OML fname(<arguments>)

OML code here
ENDOML

In this example a function called fna-
me is available at runtime to be execut-
ed anywhere in the Perl program, just
like any other function. A program can
contain any number of OML blocks re-
quired as long each one has a diffe-
rent name. More examples to illustra-
te this are available in the next section.

Examples

The following program illustrates the weaving
mechanism used for OML:

use
 Biblio::Thesaurus::ModRewrite::Embed;

my $term = $ARGV[0];
my $ontology =
 thesaurusLoad($ARGV[1]);

printTerms($ontology,$term);

OML printTerms(term)
 begin => sub {
 print “digraph new {“; }.
 term $r $t => sub {
 print “$term -> $t [label “ .
 “= $r]”;
 }.
 $t $r term => sub {
 print “$t -> $term [label = “
 . $r]”; }.
 end => sub { print “}”; }.
ENDOML

This program, given an ontology and a term, cre-
ates a graph that represents all the relations for
the given term, the graph is created using the
GraphViz http://www.graphviz.org/ no-
tation (an image file can be generated
from this notation). This is written in Perl,
lines nine to twelve are written using OML. The spe-
cial tags OML, and ENDOML delimit the code written
in OML. Later in the Perl program this OML snippet
is called using the OML block name: printTerms.
Since behind the curtain this block is transformed
in a Perl function, this can be called like any other
functions, and arguments can be passed like shown
in line six. The list of arguments that the OML block
receives are defined after the block name, there is
a special case of an argument called ontology that,
in the current implementation, is required to be
the first argument and should contain a refe-
rence to the ontology where this snippet is to
be executed. Different ontologies can be used in
different calls to the same OML block. In this spe-
cific case there is a second argument term, which
when the OML is called is replaced by the content of
the $term scalar when the function is called. Ano-
ther subtly in this example is the patterns defined
in line nine and twelve (begin and end), these are
special patterns that always evaluate as found --
meaning that the corresponding action block will al-
ways be executed -- at the beginning and at the end
of program execution.

The next example is a simplified version of a Perl
program that is used by an online application to
answer AJAX queries about points of interest.
The information about the locations is stored
in an ontology. Perl is handling the tasks for ge-
nerating HTML headers, and the JSON format
of the answer, and OML is handling the que-
ry and print of the knowledge stored in the
ontology.

use CGI;
use JSON;
use Biblio::Thesaurus::ModRewrite::Embed;

my $filter = param(‘FILTER’) or ‘ANY’;
print header,
 “{ markers: “, get_points($filter),
 “}”;

OML get_points(filter)
 $point LAT $x AND $point
 LNG $y AND $point ISA $filter
 => sub {
 print to_json(
 {name=>$point, lat=>$x, lng=>$y
 });
 }.

ENDOML

47

Since the UI uses a map that can only display
locations that have a latitude and longitude, the
query to the ontology uses a pattern that en-
forces that points have a latitude $x and a lon-
gitude $y. The application also allows filtering
the points displayed by type (cities, countries,
castles, etc.) this is why the pattern has an ex-
tra expression using the ISA relation. The final
result is a JSON formatted list of points of in-
terest names (including latitude and longitude),
that the application then uses to populate the
map displayed to the user.

Conclusion

General purpose programming languages are used
to write programs that solve arbitrary problems.
Since the syntax of these languages is intended to
be as general as possible, the process of writing
programs to deal with very specific domains can
result in huge amounts of complex code, hard to
maintain.

A DSL is an excellent approach for devising a
language to solve problems in a very specific do-
main. But a problem arises: when using a DSL,
most trivial tasks for a general purpose pro-
gramming language can be hard to describe.

A possible solution is to write programs in gene-
ral programming languages and use one or more
DSL for describing tasks in specific domains. This
approach produces more linguistic-wise efficient
programs that are written in a mix of several
languages.

In this particular case, a simple embedding sys-
tem was designed for weaving small OML pro-
grams in Perl source code, without the need of
any change to the Perl compiler itself. This was
achieved by adding an extra step to the normal
Perl execution workflow that takes a program
written both in OML and Perl, and transforms it
in a program written entirely in Perl, that can
be normally executed by the Perl compiler. This
extra step is completely transparent to the user,
which simply writes the code and fires up the
normal Perl compiler.

This approach provided an elegant and simple
way of implementing applications that make use
of ontologies, because OML was used to descri-
be the tasks that have to deal with knowledge
stored in the ontology. The programs described
in previous sections illustrate how to perform
operations on ontologies and take advantage of
the synergy between the two languages.

Further work is needed mostly on the OML lan-
guage than in the languages weaving. OML in-
cludes methods for most ontology manipula-
tive tasks, but misses some features and needs
speed improvements.

Regarding languages weaving, further work
would be interesting to analyze how the wea-
ving of well known DSL languages into Perl or
other general programming language can be
obtained. This includes further developments
to the general weaving mechanism described in
section “Weaving OML in Perl Programs”.

Bibliography

R. Backhouse, P. Jansson, J. Jeuring, and L.
Meertens. Generic Programming. in Advanced
Functional Programming, pages 28-115, Sprin-
ger, 1999.

M. Mernik, J. Heering, and T. Sloane. When and
how to develop domain-specific languages. in
ACM Computing Surveys, 37(4):316-344, ACM,
2005.

T. Kosar, P. M. Lopez, P. A. Barrientos, and M.
Mernik. A preliminary study on various imple-
mentation approaches of domain-specific langu-
ages. in Information and Software Technology,
50(5):390-405, Elsevier, April 2008.

A. van Deursen, P. Klint, and J. Visser. Domain-
specific languages: an annotated bibliography.
in SIGPLAN Not., 35(6):26-36, June 2000.

N. Carvalho. OML - Ontology Manipulation Lan-
guage. MSc thesis, University of Minho, 2008.

ISO2788 Documentation. Guidelines for the
establishment and development of monolingual
thesauri. 1986

A. Simões and J. Almeida. Library::* -- a toolkit
for digital libraries. in ElPub 2002 - Technolo-
gies Interactions, 2002.

M. J. Dominus. Higher-order Perl: Transforming
Programs with Programs. Morgan Kaufmann
Publishers, 2005

48Distributed Code Review in Perl - State of the Practice
Author: Fabian Zimmermann (fabian.zimmermann@iese.fraunhofer.de)

Bio Fabian Zimmermann

Fabian Zimmermann is working at the Fraun-
hofer Institute for Experimental Software Engi-
neering (IESE) as a researcher. After studying
computer science at the University of Kaisers-
lautern, Germany, he worked as a programmer
at an international company. There, he came into
contact with code reviews. After joining Fraun-
hofer IESE in 2008, he has been working in the
area of software quality assurance. He uses Perl
mainly for private programming projects.

Abstract

Effective code, i.e., code that follows langua-
ge-specific idioms and avoids anti-patterns, is
an important goal in software development. Alt-
hough the correct usage of certain idioms can
be enforced by static code analysis, some issues
can only be detected by humans, e.g., the use
of meaningful names. Code reviews can help to
improve code quality by detecting violations of
these idioms as well as bugs in early phases
of development. For efficient code reviews, es-
pecially in distributed development, good tool
support is recommended. A suitable review tool
needs to allow annotating parts of the code with
comments and suggestions for improvement.
This talk demonstrates how to review Perl code
with an Eclipse plugin.

Facts about Software Inspections

High quality is an important issue in software
development. High quality software is software
that is nearly bug-free, but also easy to read
and to maintain. Software inspections (The
term software inspections is commonly used
more generally for all kinds of software-related
reviews. In this paper, it is used as a synonym
for the term code review.), also known as code
reviews, can help to improve code quality by
detecting violations of idioms as well as bugs in
early phases of development.

Invented in the 1970s by Michael Fagan, soft-
ware inspections are one of the oldest software
quality assurance techniques. Several studies
have proven their efficiency. Especially the fact
that bugs can be found before runnable code is
created, is a big advantage over testing. Since
inspections can find different kinds of bugs, in-
spections and testing should be performed to-
gether. Thus, it is a good choice to integrate
both quality assurance techniques.

Inspections can also be combined with static
code analysis, such as Perl::Critics.

Fagan suggested a very formal inspection pro-
cess containing different roles and phases. These
Roles are author, inspector, organizer, modera-
tor, reader, and recorder. Since we demonstrate
a lightweight version of this process, only the
mandatory roles author of the code (program-
mer) and inspector (reviewer), who in the case
of code reviews is often another programmer,
are important here. We also concentrate on the
reviewing phase, i.e., the phase where bugs are
found.

Further information about software inspections
can be found in the inspection repository (http://
inspection.iese.de).

Goals of Software Inspections

There are several goals that can be achieved by
using software inspections. Some of these goals
are listed below:

Detection of Bugs
One of the most important goals of software
inspections is the detection of bugs in an early
phases of development. Since during detection it
is often not clear if a finding is really a bug, we
prefer the more neutral term issue.

Maintainable Code
Another important goal is high-quality code, i.e.,
code that is not only free of bugs, but also easy
to read and maintain. To reach high code quality
compliance with idioms and patterns should be
checked.

Collecting Data
To improve the development process, data about
code quality, number of bugs, bug-prone areas,
etc. can be collected. Here, it is important to use
this data only to improve the code and the deve-
lopment process, but not to blame individual pro-
grammers or reviewers for their performance.

Searching for Solutions
Reviews can also be used to find solutions for
problems. The reviewers look at a piece of code
and search for solutions, e.g., for debugging.

Coaching
Software inspections can also be used to coach
less experienced team members. On the one
hand, newbies can review the code of expe-
rienced programmers to learn what good code
looks like.

49

On the other hand, more experienced program-
mers can review the newbies‘ code and tell them
how to improve.

Creation of Common Knowledge
If every piece of code is reviewed by someone,
many people gain knowledge about different
parts of the code basis.

Team Building
One goal of inspections is the creation of high-
quality code. Inspections can help to see this as
a common goal to which every team member
contributes. Thus, inspections can help to im-
prove the team spirit.

Approval for the Author
It is very demotivating to create source code
without any feedback.If the only thing that mat-
ters is code that runs somehow, programmers
tend to produce bad quality and thus become
disappointed. Code reviews can help to give
some approval for high-quality code to the aut-
hor.

Technical Solution

To perform code reviews in distributed software
development, where programmers cannot easily
have a meeting, good tool support is recommen-
ded. Since programmers are used to writing and
reading code within their IDE, it is a good idea to
let them also use this tool for reviewing.

The reviewer needs the possibility to mark sus-
picious parts within his or her IDE and to anno-
tate these parts with his or her comments. The-

se comments should be made available to the
author and all other persons comitted, i.e. the
other programmers. Thus, the criticized parts of
the code can be easily altered based on these
comments. Additionally, the possibility exists to
discuss with the reviewer and to clarify uncer-
tainties should be provided.

Reviewing in Eclipse
Since there are several review plugins availa-
ble for Eclipse (http://www.eclipse.org/), we use
this IDE with the EPIC plugin (http://www.epic-
ide.org/).

Although there are other Eclipse plugins, such
as Jupiter (http://code.google.com/p/jupiter-
eclipse-plugin/, we decided to use AgileReview
(http://www.agilereview.org/) for our code re-
views. The reason was that AgileReview concen-
trates on the basic features for reviewing, such
as commenting and does not prescribe a specific
reviewing process.

As an example, a browser game developed in
Perl was reviewed. This project, opened in Ec-
lipse in the Perl perspective of EPIC, is shown in
Figure 2. If we as reviewers want to comment on
parts of the code, we can switch to the AgileRe-
view perspective.

In this perspective (shown in Figure 2), we can
mark lines of the code and create a new com-
ment. In this example, the reviewer is not sure,
wether the value of start_population is cor-
rect or not. The comment (shown at 2. in Figure
2) can be assigned to a certain programmer. The
corresponding lines are marked, here in yellow

Figure 1: Project opened in Perl perspective

50

(see 1. in Figure 2). If more than one review-
er is active in the project, each reviewer can
choose his or her own color.

Each team member can add a reply to a com-
ment (see 3.). In this example, there is some
discussion about the value. All comments
from a review, containing several files, can
be displayed in a seperate view (see 4.). They
can by filtered according to several criteria.
By clicking on a comment, the corresponding
lines are shown again (1.).

All required information from a review is sto-
red in an xml-file. This file can be put into
the same version control like the source code
and checked out together.

Reaching the Inspection Goals

The next question is which of the inspection
goals can be reached by reviewing code with
AgileReview. Since AgileReview enables other
programmers to review code without much

effort and within their IDE, they can detect many
of the bugs. Additionally, they can indicate if idioms
and common patterns are violated or code is hard
to understand. Thus, they can easily coach each
other in writing better code. If other programmers
read code and give positive feedback, motivation
increases with positive effects on the team spirit.
In the end, the quality of the code will improve and
the programmers will tend to write code that is ea-
sier to maintain. Even though the review data can
be used to some extend, its collection and analysis
is not in the focus of AgileReview.

Conclusion

Code reviews can be an important step towards im-
proving the quality of software. With Eclipse, EPIC,
and AgileReview, a tool chain can be built to easily
perform code reviews in projects written in Perl.

Figure 2: Project opened in AgileReview perspective

51

Bibliography

Michael Fagan, Design and code inspections to
reduce errors in program development, IBM Sys-
tems Journal, vol. 15, no. 3, pp. 182-211, 1976.

Oliver Laitenberger, Marek Leszak, Dieter Stoll,
and Khaled El-Emam, Evaluating a Causal Mo-
del of Review Factors in an Industrial Setting,
1999.

Barry Boehm and R. Victor Basili, Software De-
fect Reduction Top 10 List, IEEE Computer, vol.
34, no. 1, pp. 135-137, 2001.

Jason Cohen, Best Kept Secrets of Peer Code
Review -- Modern Approach. Practical Advice.
Smart Bear Inc., 2006.

Frank Elberzhager, Jürgen Münch, Dieter Rom-
bach, and Bernd Freimut, Optimizing Cost and
Quality by Integrating Inspection and Test Pro-
cesses, International Conference on Software
and Systems Process, pp. 3-12, 2011.

http://search.cpan.org/~thaljef/Perl-Critic-
1.118/lib/Perl/Critic.pm/

Eclipse, http://www.eclipse.org/

EPIC -- Perl Editor and IDE for Eclipse, http://
www.epic-ide.org/

AgileReview -- Code review plugin for Eclipse
http://www.agilereview.org/

52

Bio Reini Urban

Reini Urban maintains a lot of cygwin packages,
is a parrot committer and maintains a couple of
perl B modules, best known for the perl com-
piler suite. He works on perl core since 1995,
but is also using and maintaining packages in
other languages, such as Common Lisp, C, PHP,
Python, Parrot and Shell script.

At cPanel he spends 95% of his time to mainta-
in the compiler and working on improving perl5
and parrot.

Abstract

address-sanitizer (aka ASan) is a memory error
detector for C/C++, superior to valgrind. It co-
mes with clang since 3.1.

It finds:

• Use after free

• Out-of-bounds accesses to
 1. heap
 2. stack
 3. globals

• Use after return

It is very fast. The average slowdown of the in-
strumented program is ~2x, it’s ~10-20x faster
than valgrind. DEBUGGING builds should just
use it.

The tool works on x86 Linux and Mac, a win-
dows port is in work.

How it works, what errors it finds, some tools.

Overview

“Memory access bugs, including buffer over-
flows and uses of freed heap memory, remain a
serious problem for programming languages like
C and C++. Many memory error detectors exist,
but most of them are either slow or detect a li-
mited set of bugs, or both. This paper presents
AddressSanitizer, a new memory error detector.
Our tool finds out-of-bounds accesses to heap,
stack, and global objects, as well as use-after-
free bugs. It employs a specialized memory al-
locator and code instrumentation that is simple
enough to be implemented in any compiler, bi-
nary translation system, or even in hardware.

AddressSanitizer achieves efficiency without
sacrificing comprehensiveness. Its average slow-
down is just 73% yet it accurately detects bugs
at the point of occurrence. It has found over 300
previously unknown bugs in the Chromium brow-
ser and many bugs in other software.”

Typical memory bugs

Heap OOB out-of-bounds
Stack OOB out-of-bounds (unique to asan)
Global OOB out-of-bounds (unique to

asan)
UAF use-after-free (aka dangling pointer)
UAR use-after-return (unique to asan)
UMR uninitialized memory reads
Leaks not freed pointer

OOB:

overflow or underflow
read or write access

Tools

AddressSanitizer CTI compile-time instru-
mentation

Valgrind/Memcheck DBI dynamic binary
instrumentation

Dr. Memory (DBI)
Mudflap (CTI)
Guard Page (Library) (Electric fence or

DUMA on Linux, Page Heap on Windows,
Guard Malloc in Mac)

Comparison

see image next page

Usage

See perldoc perlhacktips for the Configure flags.
(-Accflags=-faddress-sanitizer ...)

The instrumentation of pointer accesses is done
during compile-time, there is no big run-time
penalty. So you just prepare your asan-enabled
perl, either with -DDEBUGGING or fully -O3 op-
timized, and test your modules with it. It will not
hurt.

This is different to the valgrind usecase, where
you typically forget to test your module against
valgrind, and suffer because it is so slow.

•
•
•

•
•
•
•

•
•

•

•

•
•
•

address-sanitizer - A fast memory error detector
Author: Reini Urban (rurban@cpanel.net)

53

Beware: Never try to valgrind an asan compiled
module! It will blow up.

Found perl5 errors

In Nov 2011 I found a lot of possible false posi-
tives with an early version, which was success-
fully used by Google.

I found this valid bug [CPAN #72700] in Scalar-
List-Utils:

gv_init(rmcgv, lu_stash, “List::Util”,
12, TRUE);

12 instead of 10, [CPAN #73118] in DBI and
[CPAN #73111] in JSON::XS.

I wrote a better symbolizer for beautify the
backtraces and adjusted my blacklist.

In March 2012 I ran the next round for the upco-
ming 5.16 release. I have found 4 core bugs. No
invalid stack access, only globals and even one
heap bug, previously undetected by valgrind.

#111594: 0ffb95f Socket.xs heap-buffer-
overflow with abstract AF_UNIX paths

#111586: sdbm.c: fix off-by-one access to
global “.dir”

•

•

#72700: The same copy&paste List::Util
BOOT bug, reading global past 2 bytes, still
unfixed.

#111610: XS::APItest::clone_with_stack
heap-use-after-free on PL_curcop.

And more CPAN bugs:

B-Generate-1.44

static SV *specialsv_list[6];
 ...
specialsv_list[6] = (SV*)pWARN_STD;
 // asan warned here

B-Flags-0.06

==19039== ERROR: AddressSanitizer \
 heap-buffer-overflow \
 on address 0x2b0995e2d47f \
 at pc 0x2b09965e709f bp 0x7ff \
 f150fcfb0 sp 0x7fff150fcfa8

READ of size 1 at 0x2b0995e2d47f thread T0

The fix was:

- if (*(SvEND(RETVAL) - 1) == ‘,’) {
+ if (SvCUR(RETVAL) && \
 (*(SvEND(RETVAL) - 1) == ‘,’)) {

•

•

•

•

54

RETVAL was an empty string in this case, and
checking SvEND - 1 for a zero size string is
invalid.

After the 5.16 release in May 2012 asan was
officially released with clang 3.1 and the fol-
lowing core errors were still present:

• heap-overflow threaded-only in swash_init -
Carp - caller - gv_stashpvn call [perl#113060]
cx corruption

• DBI use-after-free [cpan#75614]

• List::Util 1.24 [cpan#72700] (be sure to up-
grade it from CPAN if you need to use 5.16.0
plain. Fixed in 1.25)

• clone_with_stack heap-use-after-free on
PL_curcop [perl#111610]

The DBI error looked most serious to me, as
it affected the typical use case and could be
used for a security attack against databases.
The author totally ignored the bugreport,
marked the use-after-free pointer error of
the internal database handle as unimportant.
On p5p I got similar reactions, 50\% of the
patches were not applied for the major re-
lease in a 6 months time-frame.

With parrot all three found bugs were fixed
immediately, a new macro was introduced
to mark false positives and there is only one
outstanding memory bug found with asan not
yet fixed. Because there is no easy testcase
yet written, and it only affects rakudo.

I had to fix the DBI use-after-free bug (a ref-
cnt error) by myself, the fix is still not pre-
sent in the latest stable DBI CPAN release,
and the Changelog does not even mention
my bugreport and my fix and downplays the
importance.

Morale

So beware when working in perl security. You
will make no friends, you’ll have to threaten
authors with CVE’s, perl maintainers are ge-
nerally uncooperative and slow compared to
other projects.

The official perl security list is a joke.

I got no answers to my warnings. Apparently they
thought my reports are invalid. Only after others
could reproduce the errors with different memory
checkers and came up with different patches the
holes were fixed. The typical warnocking phenome-
non for which perl is famous.

Most replies were of the kind “I do not understand
your problem. We cannot fix what we do not under-
stand.” On all other projects I found similar errors
this was totally different. Projects owners are usu-
ally happy about reports of pointer errors. Never-
theless most patches are now finally accepted and
the problems fixed.

In the cases I was wrong with security assump-
tions, I got no response back what is wrong in my
logic chain. Only on IRC side-chats people came up
with explanations what was wrong.

Footnotes

USENIX ATC 2012 Abstract http://research.google.
com/pubs/pub37752.html

Adventures with clang and ASan http://blogs.perl.
org/users/rurban/2011/11/adventures-with-clang-
and-asan.html

address-sanitizer round 2 http://blogs.perl.org/
users/rurban/2012/03/address-sanitizer-round-
2.html

LLVM 3.1 with AddressSanitizer released http://
blogs.perl.org/users/rurban/2012/05/llvm-31-with-
addresssanitizer-released.html

Re: “Warnock’s Dilemma”???? http://www.nntp.perl.
org/group/perl.perl6.language/2003/05/msg15407.
html

Bibliography

1. Konstantin Serebryany and Derek Brue-
ning and Alexander Potapenko and Dmitry
Vyukov. AddressSanitizer: A Fast Address
Sanity Checker. USENIX ATC 2012. http://re-
search.google.com/pubs/pub37752.html.

55

Bio Jonathan Worthington

Jonathan is originally from England, but more
recently has been working his way through li-
ving in European countries that begin with an
`̀ S”. After a warm winter in Spain and two love-
ly years spent in beautiful Slovakia, he’s now re-
ached Sweden, where he enjoys working at Edu-
ment AB as a software architect and teacher.

In the Perl world, Jonathan is best known as one
of the key developers of the Rakudo Perl 6 com-
piler. His work has focused on the object model,
type system, multiple dispatch and signatures.
He’s a regular speaker in the European Perl Con-
ference and Workshop scene, and finds any in-
vite to come and speak and enjoy a few beers
with the local Perl hackers hard to resist.

When he’s not hacking away on something, Jo-
nathan loves to travel the world, go for walks,
study natural languages, eat curry or just relax
with friends over a pint.

Abstract

The Perl 6 exception system differs significant-
ly from that of Perl 5. Errors generated during
compilation and by the various built-ins have
have dedicated types. This means they can be
handled in a fine-grained manner. Furthermore,
details pertaining to the problem at hand can
be easily accessed through methods on the ex-
ception objects. Developers of modules and ap-
plications can easily create their own exception
types also.

While throwing exceptions is done with the fa-
miliar die function, handling them can be fairly
different. Any block may handle exceptions by
installing a CATCH phaser, and the eval block
form is replaced with try.

This article provides an overview of the excepti-
on system in Perl 6, demonstrating how to work
with and extend it.

What are Exceptions, anyway?

Exceptions are a mechanism for conveying that
something abnormal happened during the exe-
cution of a program. In Perl the lines between
compile-time and runtime are blurred, through
mechanisms such as BEGIN and eval. As a re-
sult, the compiler may throw exceptions as well
as the built-ins. Modules and application code

may also throw exception to convey their own
notions of abnormality.

Thus an exception could result from a wide ran-
ge of circumstances: trying to eval invalid code,
trying to call a method that does not exist, try-
ing to create a directory without sufficient per-
missions or trying to parse invalid JSON with a
module like JSON::Tiny.

While we could indicate all of these situations
with special return values, this ends up confla-
ting the happy paths in our code with the sad
paths, and can make it far to easy to miss that
something went wrong. Exceptions make them-
selves hard to miss, and are communicated out
of band. The language then provides mechanis-
ms for handling exceptions.

Exploring the structure of exceptions in Perl 6
and the mechanisms the language provides for
handling them is the subject of this article.

Exploring Exceptions

We enter the Rakudo REPL and decide to calcu-
late the tangent of a number. We enter the num-
ber, then call the tan method on it. Sadly, we
make a typo, which we are quickly informed of.

 > 12.8.tna
 Method ‘tna’ not found for invocant of
 class ‘Rat’

The error message here contains the name of
the method that was not found, the type of the
object we tried to call it on, and an overall de-
scription of what happened. To us as a human,
that’s fairly helpful. Beneath this textual facade,
however, lies an object that captures the key pi-
eces of information and makes them available
programatically.

To explore this, we need to get hold of the ex-
ception object. At the REPL, the easiest way to
do this is to put a try statement prefix in front
of our broken method call, and then look at what
is in $! - a special variable that contains the
most recent exception in the current scope. The
perl method gives us a representation of an
object in Perl syntax, rather like Data::Dumper
does in Perl 5.

 > try 12.8.tna; say $!.perl
 X::Method::NotFound.new(
 method => “tna”,
 typename => “Rat”,
 private => Bool::False
)

Exceptional Perl 6
Author: Jonathan Worthington (jnthn@jnthn.net)

56

In this output, X::Method::NotFound is the
type of the exception that was thrown. An
exception type is just a class, so this tells us
that there is a class called NotFound in the
X::Method package. At this point, one may
wonder what other exceptions related to me-
thods can occur. Sure enough, we can take
a look inside of the package’s symbol table -
which is really just like a hash - to find out.

 > .say for X::Method::.keys
 NotFound
 InvalidQualifier
 Private

Returning to our exception object, we can
also try extracting the individual pieces of in-
formation. For example, we can get the name
of the method that we failed to call:

 > try 12.8.tna; say $!.method
 tna

We may also be curious what this exception
object inherits from; calling the meta-me-
thod parents tells us:

 > try 12.8.tna; say $!.^parents
 Exception()

By this point, you are probably starting to get
the overall idea. Perl 6 has a bunch of dif-
ferent exception types that ultimately inhe-
rit from Exception, organized into packages.
These objects hold information about what
when wrong. On demand, they can take this
information and form a human-readable mes-
sage describing the problem. This is done by
calling the message method:

 > try 12.8.tna; say $!.message
 No such method ‘tna’ for invocant of
 type ‘Rat’

Or just by using the exception object in a st-
ring context, which delegates
to message.

 > try 12.8.tna; say “Oh, my: $!”
 Oh, my: No such method ‘tna’ for
 invocant of type ‘Rat’

Handling Exceptions

We’ve already seen the try syntax. It can be
used as both a statement prefix, as we have
already seen, or in front of a block.

 loop {
 try {
 my $expr = prompt “> “;
 say eval($expr);
 }
 say “FAIL: $!.message()” if $!;
 }

Alone, try will capture any exception that occurs,
placing it into the special variable $!. Sometimes,
this is what you want; there may be cases where
you legitimately don’t care how something fails,
and want to carry on regardless. Often, however,
you will want to take action as a result of the failu-
re. You could do this by checking if $! is set after
the try and, if needed, examining the exception.
For most cases, however, using the CATCH phaser
is preferable.

For example, imagine we are writing a script to
count effective lines of code in source files. To keep
the example simple, an effective line of code is one
that contains something other than a comment,
whitespace or curly braces. We start off by calcula-
ting the count for a single file, which we’ll hardcode
the name of. Here’s the code, featuring the CATCH
phaser.

try {
 say lines(“foo.p6”.IO).grep(
 { $_ !~~ /^\s*[<?>|‘#’.*|‘{‘|‘}’]\s*$/ }
).elems;
 CATCH {
 when X::IO {
 note “Could not count lines in foo.p6”;
 }
 }
}

A phaser is a mechanism used to attach code to
a block that will run under specific circumstances
or at a specific time. The CATCH phaser is used to
attach code that will run if an exception is thrown
in the dynamic scope of the block, and nothing else
handles it first. That is, if we call a method and
it does something that results in an exception and
does not handle it, then our CATCH phaser will be
run.

Inside of a CATCH, the exception that needs handling
is placed into the topic variable, $_. This means that
normal smart-matching can be used to indicate that we
only want to handle certain types of exception. Here,
we only handle IO exceptions (since all IO excep-
tions do the X::IO role). Anything that is not an IO
exception will be re-thrown, and the next handler
- if any - will get a chance to handle it. Just like any
other place where when is used, it is also possible to
use default, which will match any exception.

57

try {
 say lines(“foo.p6”.IO).grep(
 {$_!~~ /^\s*[<?>|‘#’.*|‘{‘|‘}’]\s*$/ }
).elems;
 CATCH {
 when X::IO {
 note “Could not count lines in foo.p6”;
 }
 default {
 note “Failed to process foo.p6”;
 }
 }
}

Note that simply having a \verb/CATCH/ block is
not sufficient. For example, if we were to have
written:

try {
 say lines(“foo.p6”.IO).grep(
 {
 $_ !~~ /^\s*[<?>|’#’.*|’{‘|’}’]\s*$/
 }
).elems;
 CATCH {
 note “Could not count lines in foo.p6”;
 }
}

Then the note would be emitted, but the excep-
tion would not be considered handled, leading
to it being re-thrown for the next CATCH block
to consider. This also happens in the case that
none of the when blocks match the exception,
and there is no default.

There are a couple of other matters worth dis-
cussing with regard to CATCH. Firstly, it can be
attached to any block, and is not coupled in any
way to the try block. For example, it could be
attached to a sub. Secondly, since it is placed in-
side of a block, it can see all of the lexicals in the
containing block. Now we’ll refactor our script
to process a list of files supplied as command
line arguments to the script, taking advantage
of both of these features.

sub effective_lines($filename) {
 return lines($filename.IO).grep(
 {
 $_ !~~ /^\s*[<?>|’#’.*|’{‘|’}’]\s*$/
 }
).elems;
 CATCH {
 default {
 note “Failed to count lines in
$filename”;
 return 0;
 }
 }
}

say [+] @*ARGS.map(&effective_lines);

How to die

We’ve now seen some ways to handle excep-
tions that are thrown. However, we may want
to throw exceptions from our own modules or
applications to signal error conditions. For exa-
mple, suppose we’re looking through a bunch of
files that should each contain a stored procedure
declarations. We write a sub that takes a file and
tries to parse out the name of the stored proce-
dure. If we do not find one, we wish to throw an
exception. Here’s a first attempt.

 my rule create_sp {
 :i
 create proc[edure]
 ‘[dbo].’?
 [
 | ‘[‘ ~ ‘]’ $<name>=[\w+]
 | $<name>=[\w+]
]
 }

 sub get_sp_name($sp_file) {
 my $sp = slurp($sp_file);
 if $sp ~~ /<sp=&create_sp>/ -> (:$sp)
{
 return $sp<name>;
 }
 else {
 die “Could not find a stored
 procedure in $sp_file”;
 }
 }

The rule is used to handle the parsing and the
capturing of the name. The exception throwing
takes place in the sub get_sp_name. This should
look fairly familiar to any Perl 5 programmer; we
use the die keyword and specify a string mes-
sage.

However, we may wish to go a step further and
define an exception type. The emerging practice
for this is to install them in the X package, with
your module or application’s package followed
by the name of the exception.

 class X::SPAnalyzer::SPNotFoundInFile
 is Exception {
 has $.file;
 method message() {
 “Could not find a stored
 procedure in $.file”
 }
 }

This can be used in place of the string message
with die:

die X::SPAnalysis::SPNotFoundInFile.new(
 file => $sp_file
);

58

Alternatively, the throw method, inheri-
ted from Exception, can be called to throw
them.

 X::SPAnalysis::SPNotFoundInFile.new(
 file => $sp_file
).throw;

Conclusion

Perl 6 takes a fairly object-oriented approach
to exceptions. However, since it is still pos-
sible to die with a simple string, to treat any
exception object as a string and even to pat-
tern match against it in the when blocks, you
are not forced into the OO approach when it
is overkill for the task at hand. This fits with
Perl 6’s general aim to let you script to your
heart’s content, but to give you the tools you
need to refactor scripts towards more robust
applications and modules as necesary.

Attaching exception handlers using phasers
means that any block can have an excep-
tion handler. While it is possible to write a
CATCH within a try block, it is not in any way
required. In fact, this is only typically done
when just a subset of the statements that

would naturally fall into an existing scope need to
be protected. In these cases a bare block would
suffice, but the try serves as a clue to the reader.

Finally, the exception system builds upon familiar
concepts from elsewhere in the language. Smart-
matching within the CATCH phasers allows the de-
veloper to draw on their understanding of when and
default, while defining new exception types is sim-
ply writing classes.

Want to give it a try? All of the examples from this
article were tested on the Rakudo (http://rakudo.
org/) Perl 6 compiler, which at the time of writing
has the most complete implementation of Perl 6 ex-
ceptions.

59

Bio Carl Mäsak

A Perl 6 programmer who also likes Perl 5 a
lot. Has helped with Rakudo since 2008. Likes
to report bugs for some reason. Writes a lot of
Perl 6 code.

Abstract

We keep hearing so many success stories. This
is a talk about things sometimes failing, and how
they fail.

I am a firm believer of learning by breaking stuff. A
big part of understanding how things work is related
to understanding the failure modes of those same
things.

This talk takes us through a handful of si-
tuations where software failed rat-
her badly, either because of professio-
nal exploiters of failure modes (like script
kiddies) of innocently curious people (like me).

Exploits

This talk takes the following thesis as a starting
point, and explores it:

 Every feature in a system is a potential
 source of exploits.

In the context of this talk, let’s define “exploit”
as “use outside of the intended parameters”.

Those intended parameters, depending on the
system, could be set by the system’s originator, its
user base, or just society at large. Exploits don’t
have to be malicious -- if I build a castle out of sugar
cubes that’s using sugar cubes outside of their
intended parameters (sweetening stuff), but it
isn’t malicious.

Features

The accumulated potential for exploits grows
with the number of features. If features are
so bad, maybe we shouldn’t add so many to
our systems? The problem is that we are rat-
her fond of features. They’re the whole point
of our systems. Maybe some features can be
dropped. Most probably can’t. Sometimes
the willingness to drop a feature shifts when

the feature is considered from an exploitation
point of view.

However, one thing we sometimes can do is
think about which features can be unified. Let’s
think of “unification” in this case as taking code
paths that belonged to individual features and
reducing them into a single code path. In some
sense, that allows you to retain your features
but expose them as aspects of a single underly-
ing feature. Done correctly, this can reduce the
exposure to exploits. Unification can also have
the advantage of making the domain model con-
ceptually simpler, and the resulting win in mana-
geability can lead to a net decrease in bugs.

C. A. R. Hoare has a relevant quote:

 There are two ways of constructing a
 software design: One way is to make
 it so simple that there are obviously
 no deficiencies, and the other way is to
 make it so complicated that there are
 no obvious deficiencies. The first
 method is far more difficult. It demands
 the same skill, devotion, insight, and
 even inspiration as the discovery of the
 simple physical laws which underlie
 the complex phenomena of nature.

I’d like to add to this that what I’ve learned in
recent years is that it doesn’t take a lot to make
a system cross the “complicated” threshold.

Bounded contexts

Everything we’ve said so far could make it seem
like the prevalence of exploits grows roughly li-
nearly with the amount of features. But it’s much
worse than that.

 Every combination of features in a system
 is a potential source of exploits.

By sheer combinatorics, we’re fucked.

This is why we talk of corner cases -- because
features interact, whether or not we anticipate
that they will.

I’ve always liked this tweet because it proposes
such an exploit:

 When I start a band, I’m gonna call
 it “Podcasts”, just to fuck with iTunes’
 directory structure.

The joy of breaking stuff
Author: Carl Mäsak (cmasak@gmail.com)

60

Features tend to interact because they work
on the same data. Try to keep this to a mi-
nimum. In fact, whenever possible, try to
put bundles of features which do not inter-
act as far away from each other as possible.
Put unrelated code paths in different boun-
ded contexts, and strongly limit interaction
across such contexts. In some sense, each
bounded context becomes system on its own,
with fewer unexpected corner cases. It’s not
a matter of removing all contact between
different bounded contexts; rather to have
such contact take place over a predefined
protocol, such as inter-context message pas-
sing. This allows each context to maintain
its own data without being entangled with
unrelated concerns.

Positive bias

But a real source of exploits in software is
positive bias, often referred to as confirma-
tion bias: a widespread weakness in human
information processing whereby we forget to
eliminate hypotheses. We tend to think that
finding positive examples of a hypothesis is
enough, but in reality it’s finding negative ex-
amples that allow us to distinguish between
hypotheses and reach conclusions.

This excerpt from Chapter 8 of the fanfic
“Harry Potter and the Methods of Rationality”
illustrates this phenomenon better than I can.

The boy’s expression grew more intense.
“This is a game based on a famous experi-
ment called the 2--4--6 task, and this is how
it works. I have a rule - known to me, but
not to you - which fits some triplets of three
numbers, but not others. 2--4--6 is one exa-
mple of a triplet which fits the rule. In fact...
let me write down the rule, just so you know
it’s a fixed rule, and fold it up and give it to
you. Please don’t look, since I infer from ear-
lier that you can read upside-down.”

The boy said “paper” and “mechanical pencil”
to his pouch, and she shut her eyes tightly
while he wrote.

“There,” said the boy, and he was holding a
tightly folded piece of paper. “Put this in your
pocket,” and she did.

“Now the way this game works,” said the boy,
“is that you give me a triplet of three num-
bers, and I’ll tell you `Yes’ if the three num-
bers are an instance of the rule, and `No’
if they’re not. I am Nature, the rule is one
of my laws, and you are investigating me.

You already know that 2--4--6 gets a `Yes’. When
you’ve performed all the further experimental
tests you want - asked me as many triplets as
you feel necessary - you stop and guess the rule,
and then you can unfold the sheet of paper and
see how you did. Do you understand the game?”

“Of course I do,” said Hermione.

“Go.”

“4--6--8” said Hermione.

“Yes,” said the boy.

“10--12--14”, said Hermione.

“Yes,” said the boy.

Hermione tried to cast her mind a little further
afield, since it seemed like she’d already done all
the testing she needed, and yet it couldn’t be that
easy, could it?

“1--3--5.”

“Yes.”

“Minus 3, minus 1, plus 1.”

“Yes.”

Hermione couldn’t think of anything else to do.
“The rule is that the numbers have to increase by
two each time.”

“Now suppose I tell you,” said the boy, “that this
test is harder than it looks, and that only 20% of
grownups get it right.”

Hermione frowned. What had she missed? Then,
suddenly, she thought of a test she still needed to do.

“2--5--8!” she said triumphantly.

“Yes.”

“10--20--30!”

“Yes.”

“The real answer is that the numbers have to go up
by the same amount each time. It doesn’t have to
be 2.”

“Very well,” said the boy, “take the paper out and
see how you did.”

Hermione took the paper out of her pocket and un-
folded it.

61

Three real numbers in increasing order, lowest
to highest.

Hermione’s jaw dropped. She had the distinct fee-
ling of something terribly unfair having been done
to her, that the boy was a dirty rotten cheating
liar, but when she cast her mind back she couldn’t
think of any wrong responses that he’d given.

“What you’ve just discovered is called p̀ositive
bias’,” said the boy.

“You had a rule in your mind, and you kept on
thinking of triplets that should make the rule say
`Yes’. But you didn’t try to test any triplets that
should make the rule say `No’. In fact you didn’t
get a single `No’, so àny three numbers’ could
have just as easily been the rule. It’s sort of like
how people imagine experiments that could con-
firm their hypotheses instead of trying to imagi-
ne experiments that could falsify them - that’s
not quite exactly the same mistake but it’s close.
You have to learn to look on the negative side of
things, stare into the darkness. When this expe-
riment is performed, only 20% of grownups get
the answer right. And many of the others invent
fantastically complicated hypotheses and put
great confidence in their wrong answers since
they’ve done so many experiments and every-
thing came out like they expected.”

We program in terms of scenarios and use cases
that we imagine in our mind. Unless we expli-
citly train ourselves to think in terms of sad pa-
ths and possible vulnerabilities, we’re unlikely to
picture the “negative hypotheses” in our code,
the things that might go wrong. The uses that
might fall outside of our intended parameters.

Power features

Let’s apply the danger of positive bias to so-called
“power features” in programming languages. Perl
is actually a good example here, because many
of its power features are double-edged swords.

Somewhere inside the CPAN module SOAP::
Lite, there is a method dispatch that (simpli-
fied) has this form:

 $soap_object->$method_name(@parameters);

This makes a lot of sense, because SOAP is an
RPC-like protocol in which the method name to
call is passed from client to the server, and co-
mes in as input to \verb!SOAP::Lite!. We don’t
know the method name at compile time, so it
makes sense to use Perl’s built-in facility to dis-

patch on the name found in a variable, here
$method_name.

But with great power comes great exploitability.
Here’s a comment and a check from the SOAP::
Lite module:

 # check to avoid security
 # vulnerability:
 # Protected->Unprotected::method(
 # @parameters)

 # see for more details:
 # http://www.phrack.org/phrack/58/
 # p58-0x09
 die “Denied access to method”
 . “($method_name)\n”
 unless $method_name =~ /^\w+$/;

The phrack.org link is dead, but the Internet Ar-
chive has our back. What follows is a simplified
explanation of the attack.

The first thing that the script kiddie exploits is
that $method_name could include not just a me-
thod name but also a package, such as HTTP::
Daemon::ClientConn::send_file. This file was
never meant to be called through the SOAP dis-
patch mechanism, but the semantics of Perl
allow it. The programmer probably never con-
ceived of the possibility before being hit with
the exploit. (Notice how even the variable name,
$method_name, allows us to endure in our posi-
tive bias here?)

Here’s a simple script which demonstrates the
exploit.

 use 5.014;
 use strict;
 use warnings;

 package C;

 sub foo {
 my ($self) = shift;
 say “foo called with arguments “,
 join “, “, map { qq[“$_”] } @_;
 }

 package main;

 my $method_name = shift @ARGV
 or die “Usage: $0 <method name>
 <method argument>*”;
 my @arguments = @ARGV;

 C->$method_name(@arguments);

Running this script looks like this:

 $ perl explain_exploit foo Hello world!
 foo called with arguments “Hello”, “world!”

62

But now let’s call the same script with this
first parameter:

 $ perl explain_exploit HTTP::Daemon::
 ClientConn::send_file ...

And let’s further assume that among the de-
pendencies of SOAP::Lite, there is code that
looks like this:

 package HTTP::Daemon::ClientConn;

 sub send_file {
 my($self, $file) = @_;
 if (!ref($file)) {
 open(F, $file) || return undef;
 # ...
 }
 }

The second thing that the script kiddie ex-
ploits is that the above code contains an
“unprotected open”, the two-argument form
where $file is allowed to contain not just
the file name, but also the mode for the
file to be opened in. Common modes are
reading (<), writing (>), and appending (>>),
but there’s also piping (|), which executes a
system command. This can be very useful.

One has to be careful, though, not to allow
arbitrary user input to populate the parame-
ter $file. (Notice, by the way, how the na-
ming of the variable $file also assists our
positive bias in thinking everything is OK?)
The ability of the second argument of an
open call to dictate the mode is the reason
two-argument open is strongly discouraged
nowadays.

The following should send chills down your
spine:

 $ perl explain_exploit HTTP::Daemon::
ClientConn::send_file ‘|/bin/ps’
 PID TTY TIME CMD
25500 pts/16 00:00:00 bash
28836 pts/16 00:00:00 perl
28837 pts/16 00:00:00 ps

The whole exploit is two injection attacks
stacked on top of each other. The two exploi-
table features aren’t even in the same modu-
le, and not even written by the same author.
Perl’s indirect method dispatch doesn’t make
it easy to separate contexts.

It’s interesting to note how subverting a CPAN
module this way is very close to being art. I
don’t condone computer intrusion in any way,

but I do admire the thinking that went into this ex-
ploit. We should all think more like this; our soft-
ware would be better for it.

Script kiddies and bug reports

It is said that every good bug report should contain
these three things:

• Steps to reproduce
• What you observed
• What you expected

These rules become self-evident when viewed from
the perspective of a fourteen-year-old script kid-
die:

• Steps to reproduce: pics or it didn’t happen
• What you observed: I ‘sploited it...
• What you expected: ...and they didn’t even see it
coming

Rakudobugs

An ancient Greek myth tells about king Midas, who
was granted the ability to transmute things he
touched turn into gold. Although initially very ex-
cited about his powers, he quickly found the down-
sides of the gift, as he couldn’t eat anything. Also,
he inadvertently turned his daughter into a gold
statue. There’s probably some lesson in there --
- maybe that of riches being less important in life
than some other things, like food and love.

In 2008, I discovered that I have something of the
Midas touch when it comes to Rakudo bugs. Actu-
ally, it seems to be me and software, but for some
reason the effect is very strong with Rakudo. I did
the opposite journey king Midas did; no-one wants
to have their software break all the time, but I came
to accept it and consider it an asset of sorts. Better
for these bugs to hit me, I reasoned, than future
users of Perl 6.

So I set forth and submitted rakudobugs to our RT
instance as I found them. I quickly got the epithet
“bug wrangler”, and learned to streamline the bug
submitting process as much as possible. Somehow
my brain considers submitting a rakudobug as
“zero work”.

As of August 2012, I’ve submitted 1356 tickets in
four years;

slightly less than one per day. There’s a total 2874
tickets in the perl6 queue, so about 47% of them
were submitted by me.

63

I submit a fair amount of bugs for others, but
the majority of the bugs I submit are things I
discover by actually using Perl 6. Surprisingly
many of these are found as part of refactoring
programs. After a refactor, there’s an implicit
expectation that things will work the same. If
they don’t, that’s a bug (or a thinko on the part
of the programmer).

Then again, sometimes all it takes is trying a
feature in a new way. In a sense, I hope to be
the jungle guide who blasts a path through Perl
6 use cases with a machete, classifying and con-
taining interesting bugs as they attack me.

A very rewarding kind of bugs are “Null PMC ac-
cess” errors (generated by the Parrot VM, very
much like a null reference exception on other
VMs) and segfaults. Both of these are by defini-
tion use outside of the parameters of the langu-
age implementation, which should never leak VM
errors to the user. As such, these bugs count as
“exploits” as we have defined it.

Make no mistake: the people working on Rakudo
Perl are really good developers. Incompetence
is not the cause of these bugs; complexity is. If
you want an example of a software design “so
complicated that there are no obvious deficien-
cies”, Perl 6 is it.

In fact, sometimes I’ve fantasized about cons-
tructing a huge multiplication table of all the
features in Perl 6, and then just go through it
cell by cell trying every pair of features to see if
that digs up new bugs. Though perhaps a simple
script suggesting random combinations of fea-
tures would be more apt.

Some rakudobug case studies

Let me show how bug golfing happens. The fol-
lowing instance is still fresh enough in my mind
that I can give an account of my thought pro-
cess.

A user, nebuchadnezzar, showed up on #perl6
and reported that the following example from
the Perl 6 book didn’t work:

class Rock { }
class Paper { }
class Scissors { }

multi wins(Scissors $, Paper $) { +1 }
multi wins(Paper $, Rock $) { +1 }
multi wins(Rock $, Scissors $) { +1 }
multi wins(::T $, T $) { 0 }
multi wins($, $) { -1 }

sub play ($a, $b) {
 given wins($a, $b) {
 when +1 { say “Player One wins” }
 when 0 { say “Draw” }
 when -1 { say “Player two wins” }
 }
}

play(Rock, Rock);
output: Player two wins

given wins(Rock, Rock) {
 when +1 {say “Player One wins”}
 when 0 {say “Draw”}
 when -1 { say “Player two wins”}
} # output: Draw

His running hypothesis was that ,”given” in the
subroutine does not seems to behave the same
say as outside. But the program is far too large
for us to say anything sensible about it. So, we
golf. (Watch as we get less and less code the
more we zero in on the bug. This is very typical
of this kind of exploration.)

By the way, a type capture, like ::T above
captures the type in the variable T, and allows
you do do type matching on it later. So the si-
gnature of wins(::T $, T $) is to be read as
“accepts two parameters with identical type”.

The first variant I come up with is this:

class R {}
multi w(::T, T) { 0 }
multi w($, $) { -1 }
sub p($a, $b) { w $a, $b }
say p(R, R);
say w(R, R);

OUTPUT: -1\n0\n

Note, there is no given construct. So we can put that
hypothesis aside. My new hypothesis is instead
that it’s the p subroutine that does it somehow.
So I try with a “pointy block” instead of a sub-
routine.

class R {}
multi w(::T, T) { 0 }
multi w($, $) { -1 }
(-> $a, $b { say w $a, $b })(R, R);
say w R, R;

OUTPUT: -1\n0\n

So it wasn’t the subroutines. My uess now is
that it’s parameter binding.

class R {}
multi w(::T, T) { 0 }
multi w($, $) { -1 }
my ($a, $b) = R, R;
say w $a, $b;

OUTPUT: -1\n

64

So it isn’t parameter binding either. It’s vari-
ables. Or rather, containers.

A containter is the thing that allows you to
assign new values to a variable, array ele-
ment, or other similar mutable thing.

These two runs seem to corroborate the con-
tainer hypothesis:

 multi w(::T, T) { 0 }
 multi w($, $) { -1 }
 say w(|[1, 1]);

 OUTPUT: -1\n

 multi w(::T, T) { 0 }
 multi w($, $) { -1 }
 say w(1, 1)

 OUTPUT: -1\n

And then, finally, the run that exposes the
bug:

 sub w(::T, T) { 0 }
 say w(|[1, 1])

OUTPUT: Nominal type check failed for
parameter
 ‘’; expected Scalar but got Int
instead
 in sub w

So the whole bug boils down to type captures
and containers not playing well together.

The next one I had already golfed a fair bit
when I presented it to the channel:

 use Test;
 class A {}
 (-> &c, $m { A.new()(); CATCH
 { default { ok 1, $m } } })(A, “”)

 OUTPUT: (signal SEGV)

The last line is a pointy block which we
instantly invoke. An instance of A gets
created and immediately invoked, an
operation it does not support, thus gene-
rating an exception. In the catch clause,
we call ok, provided through the Test
module. There’s nothing weird going on here;
so why does it segfault?

moritz manages to remove the dependency
on Test:

class A {}
(-> &c, $m { A.new()(); CATCH { default
{ say $m } } })(Mu.new, ‘’)

OUTPUT: Null PMC access in find_
method(‘gist’)

A Null PMC access is slightly less dramatic than
a segfault, but we’re still chasing the same bug
here.

At this point, I’ve convinced myself that the
A.new()(); statement actually runs. This next run
disprives that hypothesis:

 use Test;
 class A {}
 (-> &c, $m { CATCH { default { ok 1, $m }
 } })(A, “”)

 OUTPUT: (signal SEGV)

Which is our first really big clue: the CATCH block
triggers even without any other statements in the
pointy block. Which means that the CATCH block
catches something that is not in the pointy block
as such.

Could it be that CATCH blocks (wrongly) trap binding
errors? moritz tests:

 sub f(&x) { CATCH { default {
 say “OH NOES” } } }; f Mu.new

 OUTPUT: OH NOES\n

Yup. And that’s the bug. When we tried to print $m, it had a
Null PMC in it because it had not been initialized by
the binder, which gave up on the first parameter:

(-> &c, $m { CATCH { default { say $m } } }
)(Mu.new, ‘’)

OUTPUT: Null PMC access in find_
method(‘gist’)

Clearly CATCH in a block shouldn’t catch binder-
generated exceptions, and that was the bug here.

I always liked this next one:

 class B;

 method foo() {
 use A; # A.pm just defined a grammar
 }

 OUTPUT: You can not add a Method to a
 module; use a class, role or grammar

This one happened in the interaction between the
parser keeping track of whether it is inside a mo-
dule, a class, or something else, and inclusion of
new compilation units. The solution this time was
simply to make the parser do a bit of extra book-
keeping when seeing a new compilation unit.

65

The next one presupposes the knowledge of
named parameters (which bind to named argu-
ments and are identified by their name rather than
their position) and anonymous parameters
(which have just a sigil).

What happens if we have an anonymous named
parameter?

 sub foo(:$) {}
 say &foo.signature.perl

 OUTPUT: :(Any $?)\n

That shows it as an anonymous positional para-
meter, which is wrong. No-one ever considered
the possibility of an anonymous named parame-
ter up until the point when this rakudobug was
submitted.

We end this exposition with the infamous snow-
man-comet bug:

 say “abc” ~~ m <unicode
 snowman>.(.).<unicode comet>

 OUTPUT: abc\n

Now, regexes may be delimited with matching
opener and closer characters. A Unicode snowman
and comet are not matching opener and closer
characters. (Though I admit it would be quite
cute if they were.)

This only worked for regexes. Other quoting cons-
tructs were not susceptible to this. The bug did
eventually get fixed, but not so much by finding
the cause of it, as by building a next-generation
regex engine.

Conclusion

Software is hard. When you can, avoid creating
so many features. They will be used against
you.

When you can, isolate features from each
other so that they can’t interact. Iden-
tify subsystems of features that can be thus
isolated.

As a programmer, be wary of positive bias and
the way it hides exploits from you when you
code.

Due to positive bias, power features are sources
of exploits. Script kiddies are inventive; they will
chain exploits in order to take control of your
environment.

Perl 5’s indirect method call is a useful power
feature. The data passed to it must be validated
if it’s user input.

Perl 5’s two-argument open is a power feature,
but it’s unsafe. It has been obsoleted by three-
argument open. Do not use two-argument open.
Do not load modules that use it.

The number of corner cases grows with the
square of the number of features. Ask your-
self where your threshold of keeping track of
such combinations lies.

Experience shows that these corner cases are
not just a theoretical concern; they show up all
the time.

Bibliography

“Sculpture of Bangor Castle (Town Hall)
made of
sugar cubes, North Down Museum, Castle
Park, Bangor”, by Lancastrian.

http://www.flickr.com/photos/lan-
cashire/7493606694/.

http://twitter.com/tpope/sta-
tus/11815295584833536

http://lesswrong.com/lw/iw/positive_bias_look_
into_the_dark

http://en.wikipedia.org/wiki/Confirmation_bias

http://hpmor.com

http://web.archive.org/web/20060212053435/
http://www.phrack.org/phrack/58/p58-0x09

http://www.mythweb.com/Encyc/entries/midas.
html

http://rt.perl.org/rt3/Ticket/Display.
html?id=114394

http://rt.perl.org/rt3/Ticket/Display.
html?id=114134

http://rt.perl.org/rt3/Ticket/Display.
html?id=73886

http://rt.perl.org/rt3/Ticket/Display.
html?id=69492

http://rt.perl.org/rt3/Ticket/Display.

66

Bio Carl Mäsak

A Perl 6 programmer who also likes Perl 5 a lot.
Has helped with Rakudo since 2008. Is current-
ly working on a grant implementing macros in
Rakudo.

Abstract

It’s 2012, and Perl 6 is finally reaching a certain
level of maturity. It’s also getting macros.

Macros are a sort of code templates. They help
you fold boilerplate into your programs for grea-
ter maintainability. Lisp has them, so they must
be cool.

I’m currently in the middle of implementing
macros in Rakudo, one of the leading Perl 6 im-
plementations.

This talk takes you through the basics of macros,
some of the subtleties of implementing them,
and how having them makes Perl 6 less like a
Swiss army knife and more like a Swiss army.

What are macros?

Macros are code templates. Just like HTML temp-
lates allow you to specify a mostly-constant HTML
document with some interesting values inserted
here and there, a macro allows you to specify a
mostly-constant chunk of code with some in-
teresting parametric chunks of code here and
there.

Perl 6 allows you to dynamically prepare the
template that gets inserted into the mainline
code. That’s right, the macro runs right in the
middle of compile-time, much like a BEGIN block.
This creates some interesting challenges having
to do with crossing from compiling the program
to running it, and back.

Much of the unique power of macros stems from
straddling this boundary, essentially allowing
you to program your program.

Before we dive into macros, let’s make sure we
understand lexical scoping and ordinary rou-
tines fully.

Lexical scoping

Lexical scoping is the idea that a variable decla-
ration is scoped to the block it appears in:

 {
 # $var not defined here
 my $var;
 # $var defined here
 }
 # $var not defined here

What’s especially powerful about this is that the
scope information is available to the parser. We
don’t have to wait until runtime to get scoping
errors. (This is what we mean by lexical scoping,
as opposed to dynamic scoping.)

Routines are shaped funny

We all know the “shape” of arrays and hashes:
arrays hold sequences and let us access them
with an integer to get stuff out. Hashes hold
mappings and let us access them with a string to
get stuff out.

What is the shape of a routine?

Well, routines remember computations and let
us access them with a bunch of parameters. Es-
sentially, they are shaped like little programs.
They can contain anything, including access to
variables and its own variable declarations.

A closure is a function value with at least one
variable defined outside of itself. Like so:

 sub outer {
 my $x = 42;
 sub inner {
 say $x; # 42
 }
 inner();
 }

Together, those outside variables make up the
environment of the closure. I do this a lot in my
Perl 6 programming, because the environment
of inner subs contains the parameters of outer
subs, and so the inner subs need much fewer
parameters.

It’s so straightforward it doesn’t even feel
strange. But it actually is kinda strange and
wonderful. It gets more obviously strange and
wonderful when allow the closure to escape the
scope of its environment.

Macros in Rakudo
Author: Carl Mäsak (cmasak@gmail.com)

67

Note that an anonymous function is not the
same as a closure. An anonymous function
is just a function literal that lacks a name.
(Why are we so obsessed with functions ha-
ving names?

We don’t go around calling integer literals
“anonymous integers”.) The confusion arises
because we often use anonymous functions
for their capacity to generate closures, like
here:

 sub counter-constructor(Int $start) {
 my $counter = $start;
 return sub { $counter++ };
 }

(The sub is included to make this more
readable to Perl 5 people. It’s not really ne-
cessary in Perl 6.)

We’ve now returned the closure out of its en-
vironment. The environment lives on becau-
se it is referenced by the closure.

 my $c1 = counter-constructor(5);
 say $c1(); # 5
 say $c1(); # 6
 say $c1(); # 7

And we can prove to ourselves that each in-
vocation to the outer function yields a unique
closure with its separate environment:

 my $c2 = counter-constructor(42);
 say $c2(); # 42
 say $c1(); # 8
 say $c2(); # 43

Because a closure behave like this, a variable
that’s part of the closure’s environment, like
$counter, will have to be allocated on the
heap rather than on the stack. Put different-
ly, the presence of closures in a programming
language necessitate garbage collection. See
also the funarg problem.

Note that the $counter variable is complete-
ly encapsulated inside the outer function. We
can provide piecemeal access to it in exactly
the same way as we can with objects. Clos-
ures and objects are equal in power. Which
carries us into the next section.

A koan

Because closures and objects are equal in
power, they can be defined in terms of one
another, like so:

An object can be made out of a closu-
re. Data hiding comes from declaring va-
•

riables in the closure’s environment. Behavior
comes from calling the closure. We can emu-
late method dispatch by passing the method
name is a first parameter.

A closure is a kind of function object with its
environment stored as data, and one method:
apply.

This duality has been immortalized in a koan by
Anton van Straaten:

The venerable master Qc Na was walking with his
student, Anton. Hoping to prompt the master into
a discussion, Anton said “Master, I have heard that
objects are a very good thing - is this true?” Qc Na
looked pityingly at his student and replied, “Foolish
pupil - objects are merely a poor man’s closures.”

Chastised, Anton took his leave from his master and
returned to his cell, intent on studying closures. He
carefully read the entire “Lambda: The Ultimate...”
series of papers and its cousins, and implemen-
ted a small Scheme interpreter with a closure-ba-
sed object system. He learned much, and looked
forward to informing his master of his progress.

On his next walk with Qc Na, Anton attempted to
impress his master by saying “Master, I have di-
ligently studied the matter, and now understand
that objects are truly a poor man’s closures.” Qc Na
responded by hitting Anton with his stick, saying
“When will you learn? Closures are a poor man’s
object.” At that moment, Anton became enligh-
tened.

For the purposes of this text, a closure is a calla-
ble thing with internal state, just like an object.
An object’s private environment is its class, and a
closure’s private environment is the totality of the
variables defined outside of itself.

ASTs are closures

AST objects are closures. They are not like clos-
ures, they are closures. They are a representation
of executable code (potentially) using variables de-
clared outside of themselves.

If our actions are limited to the following, we can
work with ASTs while preserving their environ-
ments:

Extracting a sub-AST out of an AST.
Inserting an AST into another.
Inserting synthetic AST nodes into an exis-

ting AST.
If we manage to talk about an AST without

•

•
•
•

68

an environment (by creating one from
scratch, for example), we could make
that AST do things and participate in
code, as long as we don’t refer to any
outside variables.

The five stages of macro

Let’s look at the lifetime of an ordinary sub-
routine through compilation and running. For
simplicity, let’s assume it’s called exactly
once.

 α: The subroutine is parsed.
 β: The subroutine call is parsed. (This may
 happen before the subroutine is par-
sed,
 actually, because subs can be post-
 declared. Nevermind.)
 χ: The subroutine call is run.
 δ: The subroutine runs.

Macros are more entwined in the process of
parsing than that, and so for macros we can
identify five stages:

 a: The macro and the quasi are parsed.
 b: The macro call is parsed. Immediately
as
 the macro call has been parsed, we
 invoke the macro.
 c: The macro runs. As part of this, the
quasi
 gets incarnated and now has no holes
 anymore. An AST is returned from the
 macro.
 d: Back in parse mode, this AST is in-
serted
 into the call site in lieu of the macro
call.
 e: At some point in the distant future,
when
 compiling is over, the inserted macro
 code is run.

The steps b and d correspond to the rela-
tively uninteresting step β. The runtime step
c, corresponding to step χ, is sandwiched
between the parse-time steps b and d. In
short, subroutines have a clear separation of
parse-time and runtime. Macros deliberately
mix runtime with parse-time.

Hygienic macros

According to Wikipedia “Hygienic macros
are macros whose expansion is guaran-

teed not to cause the accidental capture of iden-
tifiers.” That is, we don’t want variables (or
other names) to collide between the macro
and the rest of the program. If we make it so
that they don’t, we’ve successfully made the macro
hygienic.

Hygiene is a big deal for all languages with macros
in them, since the lack of hygiene can cause weird
behaviors due to unintentional collisions. We’ll get
back to various techniques used to achieve hygiene.

How closures cause hygiene

Let’s reach for an example to illustrate how hygi-
ene just falls out naturally when we treat ASTs as
closures.

 macro foo($ast) {
 my $value = “in macro”;
 quasi {
 say $value;
 {{{$ast}}};
 }
 }

 my $value = “in mainline”;
 foo say $value;

Keeping in mind that ASTs retain a `̀ link’’ to their
point of origin, we step through the stages of a
macro:

a:
• The macro and the quasi are parsed.
• $value in the quasi block is recognized to refer to
the declared variable in the macro block.

b:
• The macro call is parsed. Immediately as the
macro call has been parsed, we invoke the macro.
• An AST is created out of say $value as a natural
effect of parsing. This AST is rooted in the main-
line, so the $value variable refers to the one in the
mainline.

c:
• The macro runs. As part of this, the quasi gets
incarnated and now has no holes anymore.
• $value gets inserted, but retains its link to the
mainline.
• An AST is returned from the macro.
• This AST retains its link to the macro block.

d:
• Back in parse mode, this AST is inserted into the
call site in lieu of the macro call.
• Because of how it was constructed, the AST as a
whole links to the macro block, but a part of it links
to the mainline.

69

e:
• At some point in the distant future, when com-
piling is over, the inserted macro code is run.
• And voila, it prints in macro and then in main-
line.
This is perhaps the smallest example that
shows how things stay out of the way of each
other. Each step is simple and fully general. It
works out similarly even for more composed
cases, when the going gets really tough.

Other approaches to hygiene

Wikipedia lists five ways to achieve hygiene in
macros:

Obfuscation. Using strange names that won’t
collide with anything else.

Temporary symbol creation. Also known as
“gensym”.

Read-time uninterned symbol. Essentially
giving symbols inside of a macro their own na-
mespace.

Packages. Keeping the macro’s symbols in a
separate package.

Hygienic transformation. The macro proces-
sor does gensym for you.

None of these ways rely on ASTs-as-closures.
And yet that seems to be all that’s required to
solve the problem of macro hygiene.

When I have this working -- and, after thinking
about this for over half a year, I don’t see any
reason it shouldn’t -- I’m going to edit the Wi-
kipedia page to include Closures as a sixth op-
tion.

Conclusion

Lexical scoping and all of its consequences
may be the best idea in computer science,
ever. Closures are a natural consequence of
taking both lexical scoping and first-class func-
tion values seriously.

Function values are shaped not just according to
the computation they perform, but also accor-
ding to the environment they perform it in. This
may sound like a weakness, but it’s actually a
great strength. We can use it to achieve encap-
sulation and data hiding, just like with objects.

The work on macros in Rakudo is coming along
fine. I feel I have gained a deeper appreciati-
on of lexical scoping and closures because of it.
And there’s more to come.

Bibliography

http://en.wikipedia.org/wiki/Funarg_problem.

http://people.csail.mit.edu/gregs/ll1-
discuss-archive-html/msg03277.html

https://en.wikipedia.org/wiki/Hygienic_macro

70Why statement modifiers can harm maintainability!
Author: H.Merijn Brand (h.m.brand@xs4all.nl), (Tux) http://tux.nl

Bio H.Merijn Brand

Merijn, in the perl community better known
under his alias Tux, is using mainly open sour-
ce utilities and C to exchange data between
sources, porting open source to commercial
OS’s and support the Open Source community
as widely as possible

Treasurer of the perl5 Configure landscape and
author and maintainer of several widely used
modules on CPAN.

Work currently forces Merijn to write java too.

Abstract

Programming style is and has always been and
will always be a point of discussion.

In this Lightning-Talk I will try to show where
statement modifiers will cause havoc when try-
ing to understand code someone else has writ-
ten.

This talk will specifically address a “pro-
blem” that only occurs in perl, as other lan-
guages like java and C do not have statement
modifiers. When working in a development en-
vironment where multiple languages are used,
portable style issues start to be very important.

Availability

The talk will be available after the presentation
next to previous talks from Merijn on his site:
http://tux.nl/perl.html.

All talks on that site use navigat on that is best
supported in either Opera or Firefox with Space-
Next plugin.

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {

age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle

"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {

age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {

age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle

"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {

age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle

72

Bio Salve J. Nilsen

One of the original Oslo.pm people who seem
to end up organizing stuff more often than ha-
cking. Salve is the fellow behind the first Perl
QA hackathon, two Nordic Perl Workshops in
Oslo, another hackathon for the EPO and Perl
6 people, one more Perl 6 hackathon, and the
2012 „Moving to Moose“ hackathon. Was leader
of Oslo.pm during most of its first nine years,
and is currently looking for a good employer. :)

Abstract

The Perl community is all volunteer-driven.
There‘s no big company behind it all and no boss
that makes sure everything is being taken care
of. There is no one to pick up this gauntlet but
ourselves. We are the ones who have to make
things happen. If you‘re not afraid to roll up your
sleeves, your community will always be grateful
to you if you involve yourself in your local Perl
Mongers group. To make your efforts more re-
warding, Salve has made a list of suggestions
for things to do, based on his experiences from
Oslo.pm during the past 10 years.

Some things that didn‘t work

Oslo.pm was founded a few weeks after YAPC::
EU in Munich in 2002. During the first few mee-
tups we‘ve had to figure out what to do. Here
are some of the things that we tried and that
didn‘t work.

Expecting anyone to show up all by them-
selves: Spending time on promoting is critical.
Even if you don‘t like doing it, learn to do it any-
way. It‘ll pay off immensely.

Forcing anyone to do something: Voluntee-
rism and force really don‘t go together. No one
is the boss and anyone who helps does it becau-
se they‘re nice or because they get something
out of it themselves.

Getting people excited about something
they don‘t care about: To avoid this, find out
what people care about! Listen to the guys. Talk
with them about the things they care about.

Take notes, and then use them to adapt your
plan. :)

Keeping things simple and low-key: Simple
is boring. Do something fun now and then, and
accept that there‘s some work involved.

Accepting help from people who tend to say
„no“: Getting a „no“ for an answer is depressing,
especially from people who start out by saying
yes. You need to be able to trust your cohor-
ts, so avoid the „yes-but-no“ and other negative
people.

Thinking „someone else will take care of
it“: Sometimes this works out, but it‘s always a
gamble. Being certain is much better, but that
probably means you have to do something about
it.

There‘s more! But these failures are for the
pub. Find a Perl Mongers organizer, buy them
something tasty to drink, and ask them! :)

Some things that did work

Do something that is a little ambitious: Am-
bition is good. For example, invite a community
instead of one person. Do something no one else
has done before. Buy a round of beer on everyo-
ne. Convince a Perl community superstar to visit.
Invite people from other communities to a cool
Perl event. Find out what other technical meetup
groups have done, and try to do it better! :)

Try to spend attention on having a good
time: Always be nice to people, and always
spend some attention on the new guys. Say hi,
give your „loudest“ wave and a nice smile, and
ask them if they want to sit down and join the
party. Even classic introverts can learn how to be
nice to strangers, and who knows - maybe they
have something interesting to share? :)

Try to involve your local Perl shops: All of
them! The moment you find someone working at
a Perl shop, ask if your Perl Mongers group can
have a meeting at their place next time. Have
a presentation there, and then go out and have
a beer (or something) with the other employees
there - and now and then you might find some-
one who wants to come back.

A discussion on how to organize a Perl Mongers group
Author: Salve J. Nilsen (sjn@cpan.org)

Do you have a Perl Mongers group? Are you one of the clueful people who have figured out the dou-
bleplus-goodness of being part of a strong technical community? Or do you just want to become one
of those people? Then keep reading! Maybe you‘ll pick up some ideas on how to make even cooler
stuff happen! :)

73

Build relationships with the bosses in dif-
ferent Perl shops: Technical bosses are awe-
some resources for a Perl Mongers group! You
can help them by supplying a good technical fo-
rum, they can help with location, and quite likely
some neat perks like pizza at meetings or even
sponsorship for your more ambitious events. If
you can‘t do it yourself, have someone else take
care of it! Let them know that you care about
your local technical community.

Organize courses: If you have a good relation-
ship with different companies in your area, ask
them what kind of courses they need, and try
to help them with this. This might require some
work (which you probably aren‘t afraid of since
you‘re reading this), but in return you get a bet-
ter community and - if you play it well - maybe
even some funds in the .pm group coffers. Ha-
ving some funds to play with can make a huge
impact on how ambitious you can get.

Organize a hackathon: Hackathons are very
easy to organize, especially if you pick a topic
people are excited about and you have good re-
lationships with your local Perl shops. Ask your
fellow Perl Mongers about what they care about,
and pick something a couple of you are really
excited about. Then DO IT!

When it comes to value for time invested, ha-
ckathons are very good. If you want some ideas
on how to do it, check out the author‘s blog post
about what we can learn when we accidentally
a hackathon: http://code.foo.no/2012/05/29/a-
perl-6-patterned-hackathon, or search for „or-
ganizing a Perl hackathon“ with your favourite
search engine.

Organize a workshop: Perl workshops can be
any size, from low-key saturdays with one track
of speakers and a social event in the evening,
to almost-YAPC sized multi-track conferences.
Find someone that want to help you organize
the event, and then scale it accordingly. Need
pointers on how to do it? Get in touch with some
of the people that have done it already! We‘re a
friendly bunch in the Perl community, so just go
ahead and ask. Maybe start by dropping by the
#yapc channel on irc://irc.perl.org and say what
you‘re planning?

Organize a trip: Being part of an Open Source
community doesn‘t have to be all sitting in front
of a computer at the office! Why not do it some-
where nice? There are many nice places to visit,
and there‘s nothing wrong in enjoying the world
you‘re trying to improve anyway. :)

If you can‘t be the first guy, then be the
second one: Or rather, if you can‘t be the n‘th
guy, be the n+1‘th. Helping someone else can
be both much easier and much more rewarding
than being „the one in charge“. Personally, I‘d
recommend anyone to be the 5th guy. The 5th
guy is part of a bigger group, so there‘s plenty
of support and still plenty of things to do. But if
you can‘t be the 5th guy, be the 4th guy instead.
Or the 3rd guy if there‘s no 3rd already.

Why? Because making cool stuff happen is much
easier and more fun with others. It‘s all about
motivation, and by being the 5th guy, you‘re
showing the others that you care and that you
appreciate what they do enough to spend your
own time on it.

Do something cool, then tell about it: And
finally, when you‘ve done something cool, tell
everyone about it. Seeing other people do so-
mething awesome is actually nice! :)

Links

Oslo Perl Mongers
Main website: http://oslo.pm/
Facebook: https://facebook.com/groups/
oslo.pm/
A retrospective: http://code.foo.
no/2012/01/23/an-oslo-pm-retrospective

Salve J. Nilsen
Blog: http://code.foo.no/
Twitter: http://twitter.com/sjoshuan
Facebook: http://facebook.com//sjoshuan

Other writings
On the importance of supporting Perl
events: http://act.yapc.eu/mtmh2012/
news/878
It‘s the secondary goals that make a Perl
event memorable: http://act.yapc.eu/
mtmh2012/news/864
A Perl 6-patterned hackathon: http://code.
foo.no/2012/05/29/a-perl-6-patterned-ha-
ckathon
I‘m on a (Perl) boat!: http://code.foo.
no/2011/05/11/im-on-a-perl-boat

•
•

•

•
•
•

•

•

•

•

74

Biography: Alberto Simões

I am just another Perl hacker. Programming Perl
or more than a dozen years, I use it mainly for web
development and natural language processing.

My academic formation is in computer science,
with a MSc and a PhD in natural language pro-
cessing using Perl, of course.

My main activity is teaching at university level.
Unfortunately I am not lucky to teach Perl. This
last year I have taught Bison and Flex in a Lan-
guages Processing course, and used a pseudo-
language for a course in Artificial Intelligence
for Games.

I do research in natural language processing,
with emphasis in the Portuguese language. This
explains the amount of modules in the Lingua::
and Lingua::PT:: name-spaces. The need for
speed makes me rely on C libraries which in turn
causes my need for building C and C++ libraries
using Perl.

Finally, in the Perl Community, I am member
of the YAPC Europe Foundation board, the chair
of The Perl Foundation Grants Committee, tre-
asurer of the Portuguese Perl Programmers As-
sociation and a sporadic Dancer hacker.

Abstract

We all know that the popular AutoTools is evil.
AutoConf is messy, AutoMake a confusion, and
the lack of an automated way to build this kind
of projects on most Linux distributions, Mac OS
X and Windows makes these applications porta-
bility poor.

If together with all this, your non-Perl code (let‘s
talk mostly of C and C++) will be only used from
within your own Perl module, it is a headache
and a shame to make available these libraries
in tarballs that somehow are not easy to install.

After years of user complains, I decided to
bundle some libraries inside my Perl modules.
I am sorry for anyone who wants to use the
library from another language (I do not think
there is such an user yet), but bundling the code
in a Perl module that can be automatically in-
stalled by any CPAN tool is just great. And it is
even greater if they work mostly out of the box
on the three major operating systems (for Win-
dows I need Strawberry Perl).

In this article I explain how I bundle some mo-
dules that include C or C++ libraries, like Lin-
gua::Identify::CLD, Lingua::NATools, Lin-
gua::Jspell or Text::BibTeX.

Introduction and Motivation

Before starting, I would like to make a state-
ment: this article is my point of view on how
things are in the open source world, and how I
choose to solve some of those issues. My soluti-
on is not unique, and not the best, surely.

Most C and C++ libraries that are available in
open source projects are shipped in tarballs with
a configure script and a makefile. That is an ac-
ceptable approach, but it is not the best. Other
approaches are available, like cmake, but it didn‘t
have much impact (at least, yet).

Most developers keep using the well known Au-
toTools, not because of their quality or even fle-
xibility, but because everybody uses them, and
the alternatives are not widespread. Also, there
are lots of macros already available, and most
autoconf scripts are just a bunch of copy and
paste blocks from another projects, with minor
changes, where maintainers just hope to work,
and pray everyday

What are these tools? They are mostly written in
Perl (yes, that is true) and they use M4 macros, a
language nobody on earth understands and likes
to use. These Perl scripts parse a definition of
a configuration file, and generate a shell script,
that will try to detect how to build your appli-
cation. It will detect a C compiler, a bunch of
libraries, the size of your integers, where the re-
quired libraries are, and a lot of more useful and
not so useful variables.

So, for a user to build one of these libraries, he
needs to have a Perl interpreter, autoconf, au-
tomake, libtool, m4, make, and all the software
needed to really build the library, typically a C
compiler (gcc, probably) and all the libraries the
software depends on.

This tool chain is too big to be easy to maintain,
and to have users to install on non-Linux sys-
tems. Even Mac OS X that is supposed to be an
Unix system has problems with these tools.

I have been bitten by AutoTools a lot of times,
having to give support to users to install a library
I maintain, just because they want to use a Perl
module that uses that library.

Building C/C++ libraries with Perl
Author: Alberto Simões (ambs@cpan.org)

75

I got enough from it, and decided to go all Perl.
If AutoTools are written in Perl, users need Perl.
Then, if I go for Perl as a requirement, I am not
requesting that much. Then, I will probably need
some modules that are not in the core. But tho-
se should be easy to install using any CPAN tool.
With this in mind I decided to invest some time,
and I got a tool chain of Perl modules to compile
any C and C++ code that might be bundled with
any of my Perl modules.

In the next section I will describe each of the
modules I use in my tool chain for building my
modules that include C or C++ code: Lingua::
Identify::CLD, Lingua::NATools, Lingua::
Jspell, Text::BibTeX or Lingua::FreeLing3.
Then, I will describe briefly how some of these
modules‘ build systems is working (no, I will not
detail the code, you can see it on CPAN). At the
end I will draw some conclusions.

Do not expect a step by step tutorial of how to
write your module build system. Each module is
different and has its own specifics. Also, some
code blocks might have been simplified.

Modules Tool Chain

In this section I describe the modules used, and
for what they are used. I will not enter in detail
on how to use them, or how to glue them with
each other.

Module::Build

Although the most used module in CPAN, un-
fortunately ExtUtils::MakeMaker has a big li-
mitation: the rules are expressed in a makefile,
where actions are shell commands. This makes
it harder to detect what commands to run, and
run them accordingly.

Regarding this, Module::Build has a big advan-
tage. As the rules are expressed as Perl func-
tions there is a lot more versatility. It is easy to
write a module to subclass Module::Build and
rewrite some of the methods according with our
needs.

ExtUtils::CBuilder

We are talking about building C software, which
means we need a C compiler. For that, Perl bund-
les in its core modules the ExtUtils::CBuilder
module, that is able to detect, using the Config
module, which C compiler to use and with which
flags. It also has information on how to link a
library and how to link an executable. It even
guesses some C++ flags quite well.

Its main drawback is that it is prepared to build
Perl libraries: what I mean with Perl libraries is,
the libraries that are built with XS code and are
loaded with DynaLoader. These libraries have
some differences from the standard libraries, at
least on some operating systems. For instance,
in Mac OS X, the Perl libraries are known as
bundles and the standard C libraries are known
as dyld libraries (standard dynamic libraries).
They have different functionality (not that I am
aware of the real differences, my knowledge in
this aspect is just superficial).

ExtUtils::ParseXS

Also in the Perl core modules is ExtUtils::
ParseXS. It parses XS files and generates the
corresponding C (or C++) code. If you use Ex-
tUtils::MakeMaker or Module::Build built-in
mechanism for building C extensions you are
using this module by default. As I am building
my extensions manually I need to call it myself,
to create the C/C++ glue file.

ExtUtils::Mkbootstrap

Just like the previous module, ExtUtils::Mk-
booktrap is also a Perl core module, and used
by the usual build tools to compile XS code. It
is used to create a file used by DynaLoader to
load dynamically your extension. Again, as I am
building everything by hand, it is part of my tool
chain.

ExtUtils::PkgConfig / PkgConfig

At the moment I am using ExtUtils::PkgCon-
fig to detect some libraries that bundle a .pc
file. This mechanism was used originally with
Gnome (if I recall correctly), and now is common
on most libraries. To include a pkg-config file is
easy, and can make the life of other program-
mers easier. So, why not.

The problem with ExtUtils::PkgConfig is that
it uses the pkg-config binary file. This extra
dependency is a problem. Some time ago it was
discussed that it should exist a pure Perl imple-
mentation of this module. PkgConfig seems to
be that module, but I am not using it yet. But
I will probably migrate my build scripts to use
PkgConfig in the future.

Config::AutoConf

With Config::AutoConf I start presenting two
modules written by me (and with a lot of patches
and contributions) to help me with the C and
C++ libraries build process.

76

Config::AutoConf is a module to mimic some
of the behavior you can get with autoconf. It
has some methods to help detect if a library
is available, if it can be linked with, if some
header files are available, if some binary is
available, etc.

To complete some of these tasks Config::
AutoConf uses ExtUtils::CBuilder to
build some simple C programs and detect if
they build and run properly.

ExtUtils::LibBuilder

Finally, ExtUtils::LibBuilder is probably
the most relevant module to build standa-
lone system libraries, but also, the module
that needs more work. It is a hairy modu-
le that uses a set of heuristics to, based on
the information from Config and using Ex-
tUtils::CBuilder, detect how to build a
standalone system library. For that, it uses
some magic, looks to the system type, tries
to build a bunch of files, and if it succeeds,
it returns the required flags for building the
library.

This module is known to work in all Linux va-
riants, Mac OS X and Windows with Straw-
berry Perl. I also think it should work with
Cygwin, but I didn‘t check it myself. I would
love to have it work with other compilers, like
the Microsoft ones, but I do not have them
for test, neither the time or interest to do it
myself.

My Build Modules

As I stated previously, I build my modules
sub-classing Module::Build, and rewriting
rules to compile the C code, build libraries,
etc. This section describes briefly the struc-
ture of these modules implementation.

Lingua::Jspell

To start with, let us look into Lingua::Js-
pell. This module is a morphological ana-
lyzer, whose code, written in C, is derived
from the well known ispell (therefore the
name: i++ = j). It is mainly used for the
Portuguese language, but it is language inde-
pendent (well, at least for western European
languages) accordingly with the dictionary
used.

Regarding the technical details, Lingua::
Jspell is composed by C code that is lin-
ked into a standard C library (libjspell),
some C code that should be linked against

libjspell, and a pure Perl module (the interface
at the moment is performed using a bidirectional
pipe, but in the future I plan to interface using
XS).

With this description you can argue that the library
should be shipped in an independent tarball. You
are correct. But we end up noticing that nobody
was using the C library by itself, and the work invol-
ved in maintaining AutoTools scripts was too much.

From the build chain described above, this modu-
le uses Config::AutoConf, ExtUtils::CBuilder,
ExtUtils::LibBuilder and, of course, Module::
Build.

The Build.PL script‘s algorithm is composed by:

1)

The script starts by using C<Config::AutoConf> to
detect the C<ncurses> library. In fact, I look for
the header file,

 Config::AutoConf
 ->check_header(‘ncurses.h’);

and then, for the tgoto function, for checking link
capability:

 Config::AutoConf->check_lib(
 ‘ncurses’, ‘tgoto’,
)

2)

Follows a big hack to find out where to install
the C standard library. I do not want to install it
in the usual place where Perl places the XS lib-
raries, or the system will have trouble finding
it, for instance, for the standalone binaries. For
Unix systems I get the path where Perl would in-
stall binaries (usually /usr/bin/ or /usr/local/
bin/) and I replace the bin portion with lib64 or
lib, and check if they exist. I use the first one
available. If none is available, I create the folder
and cross my fingers.

For Windows I used to install in the C:\Windows
path, but with Windows version 7 that folder is
write protected. The solution (not the best, I know)
was to split the PATH environment variable and
try to write a dummy file in each folder. The first
one that allows me that operation is the place where
I will place the dll file.

77

3)

All this information is stored both as Module::
Build configure data (that will create a modu-
le named Lingua::Jspell::ConfigData) and in
the builder notes. I also add build elements, so
the Module::Build knows where to place the
built files.

Example of a builder note being stored:

 $builder->notes(‘libdir‘ => $libdir);

Saving in the configure data:

 $builder->config_data(
 ‘libdir’ => $libdir,
);

And defining build elements:

 $builder->add_build_element(‘usrlib‘);
 $builder->install_path(
 ‘usrlib‘ => $libdir
);

Truthfully, not just the library folder is com-
puted here, but also (for Unix systems) the
pkg-config path (where the .pc file should be
placed). But I will skip these details.

4)

Finally, generate the build scripts, invoking the
Module::Build method:

 $builder->create_build_script;

Regarding the Module::Build subclass, a lot of
more work is needed. Module::Build subclasses
redefine build rules, where each rule is named
ACTION_actioname. For instance, ACTION_code
is called when you run Build, after running
Build.PL for configuring the module.

Usually I sucblass this action with a method that
just calls my build methods. Also, I prepare a Ex-
tUtils::LibBuilder instance that will be used
to build the library and compile the source code.
This could be done every time I need it, but this
way the initial tests performed by ExtUtils::
LibBuilder to configure the build system are
executed only once.

 sub ACTION_code {
 my $self = shift;

 # create some folders I need to use

 for my $path (catdir(„blib“,“pcfile“),
 catdir(„blib“,“incdir“),
 catdir(„blib“,“bindoc“),
 catdir(„blib“,“script“),
 catdir(„blib“,“bin“)) {
 mkpath $path unless -d $path;
 }

 # create the LibBuilder object
 # and save it
 my $libbuilder =
 ExtUtils::LibBuilder->new;
 $self->notes(
 libbuilder => $libbuilder
);

 # dispatch every needed action
 $self->dispatch(„create_manpages“);
 $self->dispatch(„create_yacc“);
 $self->dispatch(„create_objects“);
 $self->dispatch(„create_library“);
 $self->dispatch(„create_binaries“);

 # and now, call superclass.
 $self->SUPER::ACTION_code;
 }

These are the methods invoked, and how they
behave:

create_manpages

As the name says, this method creates man-
pages from some pod files I have to document
the C binaries that will be built. This is done
searching for all pod files in a specific directory,
and running pod2man.

At the moment I am running pod2man binary
with exactly this name. This might be a problem
for some installations that have a version con-
catenated in the binary name, or cases in which
the binary is not available in the default binary
path.

 sub ACTION_create_manpages {
 my $self = shift;

 # get a list of pod files
 my $pods = $self->rscan_dir(„src“,
qr/\.pod$/);

 # get our module version
 my $version = $self-
>notes(‚version‘);

 # for each pod file
 for my $pod (@$pods) {

78

 # compute the man page name
 # (and its path)
 my $man = $pod;
 $man =~ s!.pod!.1!;
 $man =~
 s!src!catdir(„blib“,“bindoc“)!e;

 # skip if the file is
 # up to date
 next if $self->up_to_date(
 $pod, $man
);

 # now, run directly the
 # pod2man command
 `pod2man --section=1
 --center=“Lingua::Jspell“
 --release=“Lingua-Jspell-$version“
 $pod $man`;
 }
 }

Note that here I place the manpages in the
blib\bindoc folder. Citing the documentati-
on, Documentation for the stuff in script and
bin. Usually generated from the POD in those
files. Under Unix, these are manual pages be-
longing to the ‚man1‘ category.

create_yacc

In this method I compute the C file from the
yacc source file. The method is quite straight-
forward.

 sub ACTION_create_yacc {
 my $self = shift;

 my $ytabc = catfile(
 ‘src‘,‘y.tab.c‘
);
 my $parsey = catfile(
 ‘src‘,‘parse.y‘
);

 return if $self->up_to_date(
 $parsey, $ytabc
);

 my $yacc = Config::AutoConf
 ->check_prog(„yacc“,“bison“);
 if ($yacc) {
 `$yacc -o $ytabc $parsey`;
 }
 }

Although the generated file is shipped in
the module tarball, if yacc or bison are
available, I recompute it. This makes it easy

for me to make changes and use the same make-
file to build the module.

create_objects

I build the library in two steps. First I compute the
object files in this method. To create the object files
I do not need to use the LibBuilder module, the-
refore I access the cbuilder field in the Builder ob-
ject. Then, search for all the C files, set the compile
flags to use ncurses accordingly with the detection
performed in Build.PL, and build each file, if nee-
ded.

 sub ACTION_create_objects {
 my $self = shift;

 my $cbuilder = $self->cbuilder;
 my $c_files =
 $self->rscan_dir(‘src‘, qr/\.c$/);
 my $extra_compiler_flags =
 “-g “ . $self->notes(‘ccurses‘);

 for my $file (@$c_files) {
 my $object = $file;
 $object =~ s/\.c/.o/;
 next if
 $self->up_to_date($file, $object);
 $cbuilder->compile(
 object_file => $object,
 source => $file,
 include_dirs => [„src“],
 extra_compiler_flags =>
 $extra_compiler_flags
);
 }
 }

create_library

The final step to create the library is just to link
the object files that were built in the last step in a
standard dynamic library (.so, .dyld or .dll ac-
cordingly with the operating system). This is one
of the places where I need to use the LibBuilder
object.

The process is quite simple. Start by obtaining the
LibBuilder object, detect which extension the
current operating system uses, and define the ob-
ject files that are needed for the library. I could
search for all the files with .o extension, but there
are some files that I do not want to include in the
library. Therefore, I decided to just list them all.

Then, define the library name and the place where
it will be placed, define the linker flags, and run the
link method in the LibBuilder object.

79

 sub ACTION_create_library {
 my $self = shift;

 # get details on the builder and
 # lib extension
 my $libbuilder =
 $self->notes(‘libbuilder‘);
 my $LIBEXT = $libbuilder->{libext};

 # define what files will be
 # linked together
 my @files = qw!correct defmt
 dump gclass good hash
 jjflags jslib jspell lookup
 makedent sc-corr y.tab!;

 my @objects = map {
 catfile(“src“,“$_.o“)
 } @files;

 # define where the resulting library
 # will be placed
 my $libpath = $self->notes(‚libdir‘);
 $libpath = catfile(
 $libpath, “libjspell$LIBEXT“
);
 my $libfile = catfile(
 “src“,“libjspell$LIBEXT“
);

 # define the linker flags
 my $extralinkerflags =
 $self->notes(‘lcurses‘).
 $self->notes(‘ccurses‘);
 $extralinkerflags.=
 “ -install_name $libpath“
 if $^O =~ /darwin/;

 # link if the library is not
 # up to date
 if (!$self->up_to_date(
 \@objects, $libfile)
) {
 $libbuilder->link(
 module_name => ‘libjspell‘,
 extra_linker_flags =>
 $extralinkerflags,
 objects => \@objects,
 lib_file => $libfile,
);
 }

 # create a folder where to place
 # the library
 my $libdir = catdir(
 $self->blib, ‘usrlib‘
);
 mkpath($libdir, 0, 0777)
 unless -d $libdir;

 # copy if needed
 $self->copy_if_modified(
 from => $libfile,
 to_dir => $libdir,
 flatten => 1);
 }

This code could be cleaned a little bit, but pro-
bably in a later release.

create_binaries

This method is very similar to the create_ob-
jects but, instead of creating object files from
source files, it will compile binary files from object
files. Again, this method will use the LibBuilder
object for this task.

 sub ACTION_create_binaries {
 my $self = shift;

 # get details on the builder
 # and binary extension
 my $libbuilder =
 $self->notes(‘libbuilder‘);
 my $EXEEXT = $libbuilder->{exeext};

 # define flags
 my $extralinkerflags =
 $self->notes(‘lcurses‘).
 $self->notes(‘ccurses‘);

 # define the binary that will
 # be created
 my $exe_file = catfile(
 “src“, „jspell$EXEEXT“);

 # what is the needed object file
 my $object = catfile(
 “src“, „jmain.o“);

 # if needed, link the executable
 if (!$self->up_to_date(
 $object, $exe_file)
) {
 $libbuilder->link_executable(
 exe_file => $exe_file,
 objects => [$object],
 extra_linker_flags =>
 „-Lsrc -ljspell $extralinkerflags“);
 }

 # and if needed, copy the file
 $self->copy_if_modified(
 from => $exe_file,
 to_dir => „blib/bin“,
 flatten => 1);
 }
 }

80

As it can be seen, this division in small tasks
makes it easy to follow. And they all have a
similar base (very similar with Makefile rules):
find the source files, apply a command (or
more than one) to each of them, and obtain a
set of target files.

The usual next step in the build process is to
run Build test. This invokes the ACTION_
test method. Usually I would not need to
subclass this method, but as my tests need
the binary to work, I need it to find the proper
library at run time. More important, I need it
to find the library it just linked, and not ano-
ther version that may be hanging in the file
system. For that, I just tweak the library
search path, taking care to do it correctly ac-
cordingly with the operating system in which
we are running.

 sub ACTION_test {
 my $self = shift;

 if ($^O =~ /mswin32/i) {
 $ENV{PATH} = catdir(
 $self->blib,“usrlib“).
 “;$ENV{PATH}“;
 }
 elsif ($^O =~ /darwin/i) {
 $ENV{DYLD_LIBRARY_PATH} =
 catdir($self->blib,“usrlib“);
 }
 elsif ($^O =~ /(?:linux|bsd|sun|so
l|dragonfly|hpux|irix)/i) {
 $ENV{LD_LIBRARY_PATH} =
 catdir($self->blib,“usrlib“);
 }
 elsif ($^O =~ /aix/i) {
 my $oldlibpath =
 $ENV{LIBPATH} ||
 ‘/lib:/usr/lib‘;
 $ENV{LIBPATH} = catdir(
 $self->blib,“usrlib“).
 “:$oldlibpath“;
 }

 $self->SUPER::ACTION_test
 }

Finally, if everything worked correctly, the
next usual command would be Build in-
stall. Or, probably Build fakeinstall if
you want to test how things would be in-
stalled before really installing them. In my
case, both ACTION_install and ACTION_fa-
keinstall start by calling a custom action
named pre_install.

The pre_install action does some paths
cleanups, and copies some files that don‘t

need to be built to the proper place in the blib
staging folder. I will not share here the code,
as it doesn‘t have much to talk about, and I
prefer not to waste space with it. The more
interesting portion might be a call to fix_shebang_
line and make_executable to some scripts that I edit
manually, and therefore Module::Build doesn‘t place
in the correct place. I also check if the path where
the library will be installed is a standard one, and if
not, warn the user to add the path to ldconfig, or
things will not work properly.

The install action has just one extra step, that is
running ldconfig if it is available, the operating
system is Linux and user as root. In fact, I probably
should look to the uid. In a next release.

Lingua::Identify::CLD

This module is a Perl interface to the Google‘s Chro-
mium Compact Language Detector (CLD) library.
CLD is not available as a tarball at the moment I am
writing this. It is available in a Google code re-
pository, only. After talking with its maintainer, I
decided to bundle the entire library code in my mo-
dule.

There aren‘t many differences from the pre-
vious module. The main differences are the
use of C++ code, and the fact that in this case
I have XS code, and therefore, I need to use
ExtUtils::ParseXS and ExtUtils::Mkbootstrap.

To compile the C++ code, and link the libra-
ry, the only differences are adding some lib-
raries like libstdc++, and set the C++ option
to true when invoking the compile or link me-
thods:

 $cbuilder->compile(
 object_file => $object,
 source => $file,
 include_dirs => [“cld-src“],
 extra_compiler_flags =>
 $extra_compiler_flags,
 ‘C++‘ => 1);

and

 $libbuilder->link(
 module_name => ‘libcld‘,
 extra_linker_flags =>
 $extralinkerflags,
 objects => $o_files,
 lib_file => $libfile,
 ‘C++‘ => 1);

Other than that, I need to take care of buil-
ding the XS portion. For inspiration I gave a
look to other modules that do this by hand,

81

like the case of Glib. This will be, probably, the
longest method in this article.

The code is commented, but the main steps
are:

1)

Define the XS source file, the C file that will be
generated, and the object file that will be crea-
ted.

2)

Process the XS file with ExtUtils::ParseXS,
saying I am processing a C++ file.

3)

Given the C++ source file, create the object file
from it. For this I use the standard CBuilder
builder object.

4)

The next step is the creation of a bootstrap
file. It is created by ExtUtils::Mkbootstrap
module. I am not aware of the details of this
file, nor why it‘s not always created. I con-
fess I just copied this bunch of code from
another module, and it seems to work. Open
source is great.

5)

The next step is building the library that will be
loaded by DynaLoader. First I define the linker
flags, and then use the standard CBuilder buil-
der object to create the library. This time I am
not using LibBuilder because I am not building
a standalone one, but one that will be used only
by the Perl module.

 sub ACTION_compile_xscode {
 my $self = shift;
 my $cbuilder = $self->cbuilder;

 my $archdir = catdir(
 $self->blib,
 qw‘arch auto Lingua
 Identify CLD‘);
 mkpath($archdir, 0, 0777)
 unless -d $archdir;

 # set file names
 my $cfile = catfile(„CLD.cc“);
 my $xsfile= catfile(„CLD.xs“);
 my $ofile = catfile(„CLD.o“);

 # create CLD.cc from CLD.xs
 if (!$self->up_to_date(
 $xsfile, $cfile)) {
 ExtUtils::ParseXS::process_file(
 filename => $xsfile,
 ‘C++‘ => 1,
 prototypes => 0,
 output => $cfile);
 }

 # create CLD.o from CLD.cc
 my $extra_compiler_flags =
 $self->notes(‚CFLAGS‘);
 if (!$self->up_to_date(
 $cfile, $ofile)) {
 $cbuilder->compile(
 source => $cfile,
 include_dirs => [
 catdir(„cld-src“)
],
 ‘C++‘ => 1,
 extra_compiler_flags =>
 $extra_compiler_flags,
 object_file => $ofile);
 }

 # Create .bs bootstrap file,
 # needed by Dynaloader.
 my $bs_file =
 catfile($archdir, „CLD.bs“);
 if (!$self->up_to_date(
 $ofile, $bs_file)) {
 ExtUtils::Mkbootstrap::Mkbootstrap(
 $bs_file);
 if (!-f $bs_file) {
 # Create file in case
 # Mkbootstrap didn‘t do
 # anything.
 open(my $fh, ‚>‘, $bs_file)
 or confess
 „Can‘t open $bs_file: $!“;
 }
 utime((time) x 2, $bs_file);
 # touch
 }

 # set linker flags
 my $extra_linker_flags =
 “-Lcld-src -lcld -lstdc++“;
 $extra_linker_flags .=
 “ -lgcc_s“ if $^O eq ‚netbsd‘;
 my $objects = [$ofile];
 my $lib_file = catfile(
 $archdir,
 „CLD.$Config{dlext}“);

 if (!$self->up_to_date(
 [@$objects], $lib_file)) {
 my $btparselibdir =
 $self->install_path(‚usrlib‘);

82

C

M

Y

CM

MY

CY

CMY

K

 $cbuilder->link(
 module_name =>
 ‘Lingua::Identify::CLD‘,
 extra_linker_flags =>
 $extra_linker_flags,
 objects => $objects,
 lib_file => $lib_file,
);
 }
 }

Of course I could split these steps in different
methods, dispatched from here. That can be
done in a future release, who knows.

Text::BibTeX

Text::BibTeX is a module to parse BibTeX fi les. It
uses a C library, named btparse for that
task. This library was available (and an old
version still is) as a separated tarball, but be-
cause of the same reasons already discussed,
I bundled the C code in the Perl module.

It uses the same idea of the previous mo-
dules, with no big differences.

Lingua::FreeLing3

This module is an API to a C++ library, named
FreeLing. It is used to perform natural lan-
guage processing tasks, like parsing, depen-
dency parsing, name entity recognition, etc.

In this case I do not bundle any C code from
the library, only a XS fi le generated from
SWIG. Some of the code described above
was used in this module as well.

The main reason not to use the Module::
Build capabilities to build XS code directly is
that I needed to detect FreeLing by myself,
and detect which libraries it needs to be lin-
ked against. Therefore, I decided to take the
build system in my hands.

Lingua::NATools

Finally, Lingua::NATools is a toolkit for
processing and aligning parallel corpora. Is
has been used by a lot of researchers to ex-
tract probabilistic translation dictionaries. At
fi rst, I bundled the Perl module inside the Au-
toTools tarball. It was a mess, and few users
were able to install and compile it properly.

With the expertise I gained with the other modules
(mainly Lingua::Jspell and Text::BiBTeX) I de-
cided to do the other way around, and included the
C part in a Perl module.

The main difference from this tool to the others is
the high amount of C and Perl dependencies (the
method to detect is the same as above, for Lin-
gua::Jspell), and the fact that the tests include
some binaries for themselves (that are not instal-
led, just compiled and executed during the testing
stage).

For that, the ACTION_test method starts by dis-
patching to a create_test_binaries action, very
similar to the create_binaries action, that builds
the binaries.

Final Conclusions and Remarks

All this process is very tedious to maintain, but once
I get it working, I do not need to change it much. I am
not completely happy with the code quality or main-
tainability. Also, not happy with ExtUtils::Lib-
Builder implementation. But for now, this seems to
work on my major target architectures.

When I have time, and a lower stack of to-do items,
I might patch Module::Build, or create some Mo-
dule::Build::Library, that automates some of
these tasks, as they seem easy to automate. The
result of not having that module yet, is that some
of the modules I have described have better build
implementations that others.

Finally, I would be happy with suggestions, patches,
and comments. I think this kind of tool chain is im-
portant to the Perl community, and can make the
difference for some specifi c projects.

C

M

Y

CM

MY

CY

CMY

K

